Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Virginia Commonwealth University

Ligament

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Improved Capability Of A Computational Foot/Ankle Model Using Artificial Neural Networks, Ruchi D. Chande Jan 2016

Improved Capability Of A Computational Foot/Ankle Model Using Artificial Neural Networks, Ruchi D. Chande

Theses and Dissertations

Computational joint models provide insight into the biomechanical function of human joints. Through both deformable and rigid body modeling, the structure-function relationship governing joint behavior is better understood, and subsequently, knowledge regarding normal, diseased, and/or injured function is garnered. Given the utility of these computational models, it is imperative to supply them with appropriate inputs such that model function is representative of true joint function. In these models, Magnetic Resonance Imaging (MRI) or Computerized Tomography (CT) scans and literature inform the bony anatomy and mechanical properties of muscle and ligamentous tissues, respectively. In the case of the latter, literature ...


The Design And Validation Of A Computational Rigid Body Model For Study Of The Radial Head, Cassandra Woodcock Dec 2013

The Design And Validation Of A Computational Rigid Body Model For Study Of The Radial Head, Cassandra Woodcock

Theses and Dissertations

Rigid body modeling has historically been used to study various features of the elbow joint including both physical and computational models. Computational modeling provides an inexpensive, easily customizable, and effective method by which to predict and investigate the response of a physiological system to in vivo stresses and applied perturbations. Utilizing computer topography scans of a cadaveric elbow, a virtual representation of the joint was created using the commercially available MIMICS(TM) and SolidWorks(TM) software packages. Accurate 3D articular surfaces, ligamentous constraints, and joint contact parameters dictated motion. The model was validated against two cadaveric studies performed by Chanlalit ...


The Design And Validation Of A Computational Rigid Body Model Of The Elbow., Edward Spratley Oct 2009

The Design And Validation Of A Computational Rigid Body Model Of The Elbow., Edward Spratley

Theses and Dissertations

The use of computational modeling is an effective and inexpensive way to predict the response of complex systems to various perturbations. However, not until the early 1990s had this technology been used to predict the behavior of physiological systems, specifically the human skeletal system. To that end, a computational model of the human elbow joint was developed using computed topography (CT) scans of cadaveric donor tissue, as well as the commercially available software package SolidWorks™. The kinematic function of the joint model was then defined through 3D reconstructions of the osteoarticular surfaces and various soft-tissue constraints. The model was validated ...


Tissue Engineering Cellularized Silk-Based Ligament Analogues, Scott Sell Jun 2009

Tissue Engineering Cellularized Silk-Based Ligament Analogues, Scott Sell

Theses and Dissertations

The resurgence, and eventual rise to prominence in the field of tissue engineering, that electrospinning has experienced over the last decade speaks to the simplicity and adaptability of the process. Electrospinning has been used for the fabrication of tissue engineering scaffolds intended for use in nearly every part of the human body: blood vessel, cartilage, bone, skin, nerve, connective tissue, etc. Diverse as the aforementioned tissues are in both form and function, electrospinning has found a niche in the repair of each due to its capacity to consistently create non-woven structures of fibers ranging from nano-to-micron size in diameter. These ...