Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Virginia Commonwealth University

Collagen

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Mammary Epithelial Cells Cultured Onto Non-Woven Nanofiber Electrospun Silk-Based Biomaterials To Engineer Breast Tissue Models, Yas Maghdouri-White Apr 2014

Mammary Epithelial Cells Cultured Onto Non-Woven Nanofiber Electrospun Silk-Based Biomaterials To Engineer Breast Tissue Models, Yas Maghdouri-White

Theses and Dissertations

Breast cancer is one of the most common types of cancer affecting women in the world today. To better understand breast cancer initiation and progression modeling biological tissue under physiological conditions is essential. Indeed, breast cancer involves complex interactions between mammary epithelial cells and the stroma, both extracellular matrix (ECM) and cells including adipocytes (fat tissue) and fibroblasts (connective tissue). Therefore, the engineering of in vitro three-dimensional (3D) systems of breast tissues allows a deeper understanding of the complex cell-cell and cell-ECM interactions involved during breast tissue development and cancer initiation and progression. Furthermore, such 3D systems may provide a ...


Optimization Of A Tri-Layered Vascular Graft: The Influence Of Cellular And Mechanical Properties, Michael Mcclure Jun 2011

Optimization Of A Tri-Layered Vascular Graft: The Influence Of Cellular And Mechanical Properties, Michael Mcclure

Theses and Dissertations

Electrospinning is a polymer processing technique which allows for the production of nano to micro size fibers and scaffolds which can be composed of numerous synthetic biodegradable materials and natural biopolymers. Natively, elastin and collagen are the main components of vascular tissue. Arranged in a tri-layered structure, they create a specific mechanical environment that can withstand the rigors of circulation. The goal of this study was to develop a mechanically ‘biomimicking’ vascular graft composed of three distinct layers through the process of electrospinning. We hypothesize that the use of bioactive agents such as elastin, collagen, and silk to supplement poly ...


Design Of An Electrospun Type Ii Collagen Scaffold For Articular Cartilage Tissue Engineering, Catherine Pemble Barnes Jan 2007

Design Of An Electrospun Type Ii Collagen Scaffold For Articular Cartilage Tissue Engineering, Catherine Pemble Barnes

Theses and Dissertations

Traumatic defects in articular cartilage can lead to joint disease and disability including osteoarthritis. Because cartilage is unable to regenerate when injured, the field of tissue engineering holds promise in restoring functional tissue. In this research, type II collagen was electrospun, cross-linked, and tested as scaffolds for supporting chondrocyte growth. The mechanical, biochemical, and histological characteristics of the engineered tissue were assessed as a function of the electrospinning solution concentration (i.e. scaffold fiber diameter and pore properties) and as a function of the time in culture (evaluated at 2, 4, and 6 weeks). Fiber diameter had a linear relationship ...