Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Virginia Commonwealth University

CAD

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

The Design And Validation Of A Computational Rigid Body Model For Study Of The Radial Head, Cassandra Woodcock Dec 2013

The Design And Validation Of A Computational Rigid Body Model For Study Of The Radial Head, Cassandra Woodcock

Theses and Dissertations

Rigid body modeling has historically been used to study various features of the elbow joint including both physical and computational models. Computational modeling provides an inexpensive, easily customizable, and effective method by which to predict and investigate the response of a physiological system to in vivo stresses and applied perturbations. Utilizing computer topography scans of a cadaveric elbow, a virtual representation of the joint was created using the commercially available MIMICS(TM) and SolidWorks(TM) software packages. Accurate 3D articular surfaces, ligamentous constraints, and joint contact parameters dictated motion. The model was validated against two cadaveric studies performed by Chanlalit et al. …


The Design And Validation Of A Computational Rigid Body Model Of The Elbow., Edward Spratley Oct 2009

The Design And Validation Of A Computational Rigid Body Model Of The Elbow., Edward Spratley

Theses and Dissertations

The use of computational modeling is an effective and inexpensive way to predict the response of complex systems to various perturbations. However, not until the early 1990s had this technology been used to predict the behavior of physiological systems, specifically the human skeletal system. To that end, a computational model of the human elbow joint was developed using computed topography (CT) scans of cadaveric donor tissue, as well as the commercially available software package SolidWorks™. The kinematic function of the joint model was then defined through 3D reconstructions of the osteoarticular surfaces and various soft-tissue constraints. The model was validated …


Myocardial Perfusion Imaging With Rb-82 Pet, George Nittil Francis Jan 2005

Myocardial Perfusion Imaging With Rb-82 Pet, George Nittil Francis

Theses and Dissertations

Myocardial perfusion imaging (MPI) is an effective technique used to study the left ventricular ejection function (LVEF), myocardial perfusion, wall motion, and wall thickening. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are two modalities that can be used to quantify the left global and regional perfusion at rest and stress. While PET and SPECT rely on similar principles to produce images, important differences in instrumentation and experimental applications are dictated by inherent differences in their respective physics of radioactive decay. With a sensitivity > 90% in combination with a high specificity, PET is today the best available …