Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Using Crosslinked Hyaluronic Acid (Ha) And Collagen Scaffolds With Sustained Brain-Derived Neurotrophic Factor (Bdnf) Release For Post-Sci Nerve Regeneration, Panth Doshi Jan 2018

Using Crosslinked Hyaluronic Acid (Ha) And Collagen Scaffolds With Sustained Brain-Derived Neurotrophic Factor (Bdnf) Release For Post-Sci Nerve Regeneration, Panth Doshi

Undergraduate Research Posters

Traumatic events resulting in spinal cord injuries (SCIs) often leave people paralyzed or with partial loss of motor function. The physical disabilities arising from traumatic events prevent people from functioning at the same level as pre-injury. My work aims to identify a plausible method to overcome the inhibitory post-SCI environment and to regenerate nervous tissue in order to restore neural function and, subsequently, motor function. I identified components of a new, hypothetical nerve scaffold based on the immune response after SCIs and the efficacy of currently used scaffolds for nerve regeneration. Hyaluronic acid (HA) polymer scaffolds and collagen-based scaffolds are ...


Skintronics: Wireless, Skin-Wearable Electronics For Monitoring Of Electrocardiogram, Matthew B. Piper, Woon-Hong Yeo, Yongkuk Lee Jan 2017

Skintronics: Wireless, Skin-Wearable Electronics For Monitoring Of Electrocardiogram, Matthew B. Piper, Woon-Hong Yeo, Yongkuk Lee

Undergraduate Research Posters

The ECGs I micro-fabricate are designed to be flexible, stretchable and wireless circuits that can be applied to the skin directly. The device is encased in a conformal, silicon-like substrate, that allows the ECG to be attached with the electrodes. Each electrode has been previously measured and verified that it will be correctly placed for an accurate reading. Prototyping this ECG/electrode device allows the user to mount the prototype directly to the patient without having to attach and wire ten other electrodes. This prototype solves the issue that comes about when a doctor, nurse or emergency medical technician must ...


Fluorescent Biosensors To Measure Endothelial Cell Responses To Fluid Shear Stress, Natalie Noll Jan 2015

Fluorescent Biosensors To Measure Endothelial Cell Responses To Fluid Shear Stress, Natalie Noll

Undergraduate Research Posters

The response of endothelial cells, innermost layer of blood vessels, to blood flow is thought to be critical in the initiation and progression of atherosclerosis. Atherosclerosis in the human body is non-random and is highly correlated to vessel sites which experience oscillatory and reversing blood flow. Endothelial cells (ECs), the inner most cell layer of blood vessels are highly responsive to the drag force from blood flow, known as shear stress. To study endothelial cell responses to shear stress we used a parallel plate flow chamber in which we exposed endothelial cells to defined fluid shear stress. Using fluorescence resonance ...


Design And Creation Of A Device To Induce Vergence Eye Movements, Jacob B. Jaminet, Paul A. Wetzel Jan 2015

Design And Creation Of A Device To Induce Vergence Eye Movements, Jacob B. Jaminet, Paul A. Wetzel

Undergraduate Research Posters

Automated eye-tracking systems can detect and analyze eye movements as a means to accurately diagnose more than 20 neurological diseases including mild traumatic brain injury. Mild traumatic brain injury is an occurrence of injury to the head resulting from blunt trauma or from acceleration or deceleration forces. Eye movement refers to the voluntary or involuntary movement of the eyes, helping in acquiring, fixating and tracking visual stimuli. There are three types of voluntary eye movement to track objects: smooth pursuit, vergence shifts and saccades. Vergence shifts are eye movements where the eyes move in opposite directions: moving to the midline ...


In Vivo Immunotoxicological Evaluation Of Electrospun Polycaprolactone (Epcl) And Investigation Of Epcl As A Drug Delivery System For Immunomodulatory Compounds, Colleen Mcloughlin May 2012

In Vivo Immunotoxicological Evaluation Of Electrospun Polycaprolactone (Epcl) And Investigation Of Epcl As A Drug Delivery System For Immunomodulatory Compounds, Colleen Mcloughlin

Theses and Dissertations

Electrospun materials have potential use in many biomedical applications such as soft tissue replacements or as scaffolds to target drug delivery to local sites. Electrospinning is a polymer processing technique that can be used to create materials composed of fibers with diameters ranging from the micron to the nanoscale. We investigated the effects of microfibrous and nanofibrous electrospun polycaprolactone (EPCL) on innate, cell-mediated, and humoral components of the immune system. Results demonstrated that in both young (12 week) and old (6 month) mice, EPCL had no effect on various immune parameters. With its lack of immunotoxicity, EPCL presents an excellent ...