Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

The Role Of Kras In Mechanosensing In Non-Small Cell Lung Cancer, Krista M. Powell Jan 2019

The Role Of Kras In Mechanosensing In Non-Small Cell Lung Cancer, Krista M. Powell

Theses and Dissertations

Lung cancer is the number one cause of cancer related death worldwide, with more than 1.6 million fatalities each year. Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers, with KRAS being one of the most prevalent oncogenic driver mutations. Therapeutic approaches for KRAS-mutated NSCLC have been extensively explored due to the US National Cancer Institute RAS Initiative, but methods of directly targeting KRAS or downstream effectors, such as MEK, still have poor results. Previous reports have shown that KRAS-mutated NSCLC activate distinct receptor tyrosine kinases (RTKs) depending on the epithelial or mesenchymal state. Epithelial-to-mesenchymal transition (EMT) …


A Computational Assessment Of Lisfranc Injuries And Their Surgical Repairs, Michael Perez Jan 2019

A Computational Assessment Of Lisfranc Injuries And Their Surgical Repairs, Michael Perez

Theses and Dissertations

While Lisfranc injuries in the mid foot are less common than other ankle and mid foot injuries, they pose challenges in both properly identifying them and treating them. When Lisfranc injuries are ligamentous and do not include obvious fractures, they are very challenging for clinicians to identify unless weight bearing radiographs are used. The result is that 20%-40% of Lisfranc injuries are missed in the initial evaluation. Even when injuries are correctly identified the outcomes of surgical procedures remain poor. Existing literature has compared the different surgical procedures but has not had a standard approach or procedures across studies. This …


Mechanochemical Regulation Of Epithelial Tissue Remodeling: A Multiscale Computational Model Of The Epithelial-Mesenchymal Transition Program, Lewis Scott Jan 2019

Mechanochemical Regulation Of Epithelial Tissue Remodeling: A Multiscale Computational Model Of The Epithelial-Mesenchymal Transition Program, Lewis Scott

Theses and Dissertations

Epithelial-mesenchymal transition (EMT) regulates the cellular processes of migration, growth, and proliferation - as well as the collective cellular process of tissue remodeling - in response to mechanical and chemical stimuli in the cellular microenvironment. Cells of the epithelium form cell-cell junctions with adjacent cells to function as a barrier between the body and its environment. By distributing localized stress throughout the tissue, this mechanical coupling between cells maintains tensional homeostasis in epithelial tissue structures and provides positional information for regulating cellular processes. Whereas in vitro and in vivo models fail to capture the complex interconnectedness of EMT-associated signaling networks, …