Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Designing Biomimetic Implant Surfaces To Promote Osseointegration Under Osteoporotic Conditions By Revitalizing Mechanisms Coupling Bone Resorption To Formation, Ethan M. Lotz Jan 2019

Designing Biomimetic Implant Surfaces To Promote Osseointegration Under Osteoporotic Conditions By Revitalizing Mechanisms Coupling Bone Resorption To Formation, Ethan M. Lotz

Theses and Dissertations

In cases of compromised bone remodeling like osteoporosis, insufficient osseointegration occurs and results in implant failure. Implant retention relies on proper secondary fixation, which is developed during bone remodeling. This process is disrupted in metastatic bone diseases like osteoporosis. Osteoporosis is characterized low bone mass and bone strength resulting from either accelerated osteoclast-mediated bone resorption or impaired osteoblast-mediated bone formation. These two processes are not independent phenomena. In fact, osteoporosis can be viewed as a breakdown of the cellular communication connecting bone resorption to bone formation. Because bone remodeling occurs at temporally generated specific anatomical sites and at different times ...


Peracetic Acid: A Practical Agent For Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds, William R. Trahan Jan 2015

Peracetic Acid: A Practical Agent For Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds, William R. Trahan

Theses and Dissertations

Advanced biomaterials and sophisticated processing technologies aim to fabricate tissue-engineering scaffolds that can predictably interact within a biological environment at a cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed prior to clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone (PCL), a low melting polymer, and ...