Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Biomedical Engineering and Bioengineering

Designing Biomimetic Implant Surfaces To Promote Osseointegration Under Osteoporotic Conditions By Revitalizing Mechanisms Coupling Bone Resorption To Formation, Ethan M. Lotz Jan 2019

Designing Biomimetic Implant Surfaces To Promote Osseointegration Under Osteoporotic Conditions By Revitalizing Mechanisms Coupling Bone Resorption To Formation, Ethan M. Lotz

Theses and Dissertations

In cases of compromised bone remodeling like osteoporosis, insufficient osseointegration occurs and results in implant failure. Implant retention relies on proper secondary fixation, which is developed during bone remodeling. This process is disrupted in metastatic bone diseases like osteoporosis. Osteoporosis is characterized low bone mass and bone strength resulting from either accelerated osteoclast-mediated bone resorption or impaired osteoblast-mediated bone formation. These two processes are not independent phenomena. In fact, osteoporosis can be viewed as a breakdown of the cellular communication connecting bone resorption to bone formation. Because bone remodeling occurs at temporally generated specific anatomical sites and at different times ...


Modulating The Innate Immune Response To Electrospun Scaffolds And Polymer Degradative Byproducts, Daniel Abebayehu Jan 2017

Modulating The Innate Immune Response To Electrospun Scaffolds And Polymer Degradative Byproducts, Daniel Abebayehu

Theses and Dissertations

Implanted biomaterials often induce inflammation that frequently leads to the foreign body response, fibrosis, and the failure of the implant. Thus, it is important to evaluate how cells interact with materials to promote a more regenerative response. It is critical to determine how to modulate the response of tissue resident innate immune cells, as they are among the first cells to interact with implanted materials. Among tissue resident innate immune cells are mast cells, which are inflammatory sentinels that degranulate and orchestrate the fate of other cell populations, such as monocytes/macrophages and lymphocytes. Mast cells have also been reported ...


Investigation Of Polymeric Composites For Controlled Drug Release, Hsi-Wei Yeh Jan 2017

Investigation Of Polymeric Composites For Controlled Drug Release, Hsi-Wei Yeh

Theses and Dissertations

The Electrospray (ES) technique is a promising particle generation method for drug delivery due to its capabilities of producing monodisperse PLGA composite particles with unique configurations and high drug encapsulation efficiency. In the dissertation work, the coaxial dual capillary ES was used to generate drug-loaded core-shell PLGA particles to study the effects of particle filling materials, drug loading locations and particle shell thicknesses on the resultant in vitro release behaviors of the hydrophilic and/ or hydrophobic model drugs. Through release profile characterization of drug-loaded PLGA particles (particle size: 400 nm and 1 μm), it was confirmed that the co-encapsulation of ...


Development Of An Electrospun And 3d Printed Cellular Delivery Device For Dermal Wound Healing, Ryan M. Clohessy Jan 2017

Development Of An Electrospun And 3d Printed Cellular Delivery Device For Dermal Wound Healing, Ryan M. Clohessy

Theses and Dissertations

The goal of this research was to develop a system of individualized medicine that could be applied to dermal wounds serving as a wound dressing and synthetic extracellular matrix while delivering stem cells to the wound bed. First, fabrication parameters for electrospinning polymer fibers were determined. This involved evaluating fiber morphology with respect to polymer selection and solution concentration. Next, construct fabrication was examined to produce an integrated void space, or cargo area, suitable to maintain stem cells. In vitro studies to ensure stem cell viability and phenotype were conducted, and results supported the notion that cells could be administered ...


Electrospraying Extracellular Matrix To Form Nanoparticles, Patrick Link Jan 2017

Electrospraying Extracellular Matrix To Form Nanoparticles, Patrick Link

Theses and Dissertations

Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of death worldwide. Alveolar wall destruction is a significant contributor to COPD. Inflammatory macrophages are a major source of the Extracellular Matrix (ECM) proteolysis. ECM breakdown causes air to get trapped in the alveoli, obstructing airflow. One step in curing COPD may be to convert inflammatory to pro-regenerative macrophages. Recently, decellularized ECM scaffolds have shown the ability to induce a pro-regenerative phenotype.

Yet these scaffolds are incapable for reaching the alveolar region of the lungs. To reach the alveolar region particles need a diameter of 1-5 μm or smaller than 300 ...


An Injectable Stem Cell Delivery System For Treatment Of Musculoskeletal Defects, Shirae Leslie Jan 2016

An Injectable Stem Cell Delivery System For Treatment Of Musculoskeletal Defects, Shirae Leslie

Theses and Dissertations

The goal of this research was to develop a system of injectable hydrogels to deliver stem cells to musculoskeletal defects, thereby allowing cells to remain at the treatment site and secrete soluble factors that will facilitate tissue regeneration. First, production parameters for encapsulating cells in microbeads were determined. This involved investigating the effects of osmolytes on alginate microbead properties, and the effects of alginate microbead cell density, alginate microbead density, and effects of osteogenic media on microencapsulated cells. Although cells remained viable in the microbeads, alginate does not readily degrade in vivo for six months. Therefore, a method to incorporate ...


Characterization Of Poly(Dimethylsiloxane) Blends And Fabrication Of Soft Micropillar Arrays For Force Detection, Thomas J. Petet Jr Jan 2016

Characterization Of Poly(Dimethylsiloxane) Blends And Fabrication Of Soft Micropillar Arrays For Force Detection, Thomas J. Petet Jr

Theses and Dissertations

Diseases involving fibrosis cause tens of thousands of deaths per year in the US alone. These diseases are characterized by a large amount of extracellular matrix, causing stiff abnormal tissues that may not function correctly. To take steps towards curing these diseases, a fundamental understanding of how cells interact with their substrate and how mechanical forces alter signaling pathways is vital. Studying the mechanobiology of cells and the interaction between a cell and its extracellular matrix can help explain the mechanisms behind stem cell differentiation, cell migration, and metastasis. Due to the correlation between force, extracellular matrix assembly, and substrate ...


Development And Characterization Of Lung Derived Extracellular Matrix Hydrogels, Robert A. Pouliot Jan 2016

Development And Characterization Of Lung Derived Extracellular Matrix Hydrogels, Robert A. Pouliot

Theses and Dissertations

Chronic obstructive pulmonary disease (COPD) including emphysema is a devastating condition, increasing in prevalence in the US and worldwide. There remains no cure for COPD, rather only symptomatic treatments. Due to unique challenges of the lung, translation of therapies for acute lung injury to target chronic lung diseases like COPD has not been successful. We have been investigating lung derived extracellular matrix (ECM) hydrogels as a novel approach for delivery of cellular therapies to the pulmonary system.

During the course of this work we have developed and characterized a lug derived ECM hydrogel that exhibits “injectability,” allowing cells or dugs ...


Characterization Of Fibrin Matrix Incorporated Electrospun Polycaprolactone Scaffold, Cho Yi Wong Jan 2016

Characterization Of Fibrin Matrix Incorporated Electrospun Polycaprolactone Scaffold, Cho Yi Wong

Theses and Dissertations

Specific objective: Guided tissue regeneration (GTR) aims to regenerate the lost attachment apparatus caused by periodontal disease through the use of a barrier membrane. For the GTR procedures to be successful, barrier membranes are required to be present at the surgical site for an extended period of time (weeks to months). Synthetic membranes have the advantage of prolonged presence in a wound site; however, they do not actively contribute to wound healing. Biologic membranes are recognized by the host tissue and participate in wound healing but have the disadvantage of early resorption. Therefore, the goal of this study is to ...


Peracetic Acid: A Practical Agent For Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds, William R. Trahan Jan 2015

Peracetic Acid: A Practical Agent For Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds, William R. Trahan

Theses and Dissertations

Advanced biomaterials and sophisticated processing technologies aim to fabricate tissue-engineering scaffolds that can predictably interact within a biological environment at a cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed prior to clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone (PCL), a low melting polymer, and ...


Peracetic Acid Sterilization Of Electrospun Polycaprolactone Scaffolds, Suyog Yoganarasimha Jan 2015

Peracetic Acid Sterilization Of Electrospun Polycaprolactone Scaffolds, Suyog Yoganarasimha

Theses and Dissertations

Sterilization of tissue engineered scaffolds is an important regulatory issue and is at the heart of patient safety. With the introduction of new biomaterials and micro/nano structured scaffolds, it is critical that the mode of sterilization preserve these built-in features. Conventional sterilization methods are not optimal for engineered polymeric systems and hence alternate systems need to be identified and validated. PCL is polyester with a low melting point (heat labile), susceptible to hydrolysis and is popular in tissue engineering. Electrospinning generates some nanoscale features within the scaffold, the integrity of which can be affected by sterilization method. Chapter 1 ...


Tissue Engineering Scaffold Fabrication And Processing Techniques To Improve Cellular Infiltration, Casey Grey Jan 2014

Tissue Engineering Scaffold Fabrication And Processing Techniques To Improve Cellular Infiltration, Casey Grey

Theses and Dissertations

Electrospinning is a technique used to generate scaffolds composed of nano- to micron-sized fibers for use in tissue engineering. This technology possesses several key weaknesses that prevent it from adoption into the clinical treatment regime. One major weakness is the lack of porosity exhibited in most electrospun scaffolds, preventing cellular infiltration and thus hosts tissue integration. Another weakness seen in the field is the inability to physically cut electrospun scaffolds in the frontal plane for subsequent microscopic analysis (current electrospun scaffold analysis is limited to sectioning in the cross-sectional plane). Given this it becomes extremely difficult to associate spatial scaffold ...


Mineralization Potential Of Electrospun Pdo-Hydroxyapatite-Fibrinogen Blended Scaffolds, Isaac Rodriguez, Parthasarathy A. Madurantakam, Jennifer M. Mccool, Scott A. Sell, Hu Yang, Peter C. Moon, Gary L. Bowlin Jan 2012

Mineralization Potential Of Electrospun Pdo-Hydroxyapatite-Fibrinogen Blended Scaffolds, Isaac Rodriguez, Parthasarathy A. Madurantakam, Jennifer M. Mccool, Scott A. Sell, Hu Yang, Peter C. Moon, Gary L. Bowlin

Biomedical Engineering Publications

The current bone autograft procedure for cleft palate repair presents several disadvantages such as limited availability, additional invasive surgery, and donor site morbidity. The present preliminary study evaluates the mineralization potential of electrospun polydioxanone:nano-hydroxyapatite : fibrinogen (PDO : nHA : Fg) blended scaffolds in different simulated body fluids (SBF). Scaffolds were fabricated by blending PDO : nHA : Fg in the following percent by weight ratios: 100 : 0 : 0, 50 : 25 : 25, 50 : 50 : 0, 50 : 0 : 50, 0 : 0 : 100, and 0 : 50 : 50. Samples were immersed in (conventional (c), revised (r), ionic (i), and modified (m)) SBF for 5 and 14 days ...