Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Biomedical Engineering and Bioengineering

Computational Modeling Of Temporal Eeg Responses To Cyclic Binary Visual Stimulus Patterns, Connor M. Delaney Jan 2023

Computational Modeling Of Temporal Eeg Responses To Cyclic Binary Visual Stimulus Patterns, Connor M. Delaney

Theses and Dissertations

The human visual system serves as the basis for many modern computer vision and machine learning approaches. While detailed biophysical models of certain aspects of the visual system exist, little work has been done to develop an end-to-end model from the visual stimulus to the signals generated at the visual cortex measured via the scalp electroencephalogram (EEG). The creation of such a model would not only provide a better understanding of the visual processing pathways but would also facilitate the design and evaluation of more robust visual stimuli for brain-computer interfaces (BCIs). A novel experiment was designed and conducted where …


Characterization And Decoding Of Speech Activity From Intracranial Signals, Pedram Zanganeh Soroush Jan 2023

Characterization And Decoding Of Speech Activity From Intracranial Signals, Pedram Zanganeh Soroush

Theses and Dissertations

Speech is the first and foremost means of human communication. Millions of people worldwide suffer from severe speech disorders due to neurological diseases such as amyotrophic lateral sclerosis (ALS), brain stem stroke, and severe paralysis. A speech neuroprosthesis that decodes speech directly from neural signals could dramatically improve life for these individuals. Recent studies have demonstrated that it is possible to decode and synthesize various aspects of acoustic speech directly from intracranial measurements of electrophysiological brain activity. For those who have completely lost the ability to speak, the objective is to synthesize acoustic speech directly from brain activity during imagined …


Universal Design In Bci: Deep Learning Approaches For Adaptive Speech Brain-Computer Interfaces, Srdjan Lesaja Jan 2022

Universal Design In Bci: Deep Learning Approaches For Adaptive Speech Brain-Computer Interfaces, Srdjan Lesaja

Theses and Dissertations

In the last two decades, there have been many breakthrough advancements in non-invasive and invasive brain-computer interface (BCI) systems. However, the majority of BCI model designs still follow a paradigm whereby neural signals are preprocessed and task-related features extracted using static, and generally customized, data-independent designs. Such BCI designs commonly optimize narrow task performance over generalizability, adaptability, and robustness, which is not well suited to meeting individual user needs. If one day BCIs are to be capable of decoding our higher-order cognitive commands and conceptual maps, their designs will need to be adaptive architectures that will evolve and grow in …


Innovative Techniques Of Neuromodulation And Neuromodeling Based On Focal Non-Invasive Transcranial Magnetic Stimulation For Neurological Disorders, Ivan C. Carmona-Tortolero Jan 2022

Innovative Techniques Of Neuromodulation And Neuromodeling Based On Focal Non-Invasive Transcranial Magnetic Stimulation For Neurological Disorders, Ivan C. Carmona-Tortolero

Theses and Dissertations

This dissertation aims to develop alternative technology that improves the current range of application of transcranial magnetic stimulation (TMS), on a scale that would permit defining specific non-invasive treatments for Parkinson’s disease and other neurological disorders. This is accomplished through three specific objectives. 1) The design of a neurostimulation system that increases the focality in TMS to regions of narrow target areas and variable depths in the brain cortex. 2) The assessment of the feasibility of novel high-frequency neuromodulation techniques that would allow increasing the focality in deeper areas beyond the cortical surface. 3) The development of a computational model …


Effect Of Stimulus Waveform On Transcranial Magnetic Stimulation Metrics In Proximal And Distal Arm Muscles, Christopher Lynch Jan 2021

Effect Of Stimulus Waveform On Transcranial Magnetic Stimulation Metrics In Proximal And Distal Arm Muscles, Christopher Lynch

Theses and Dissertations

Objectives: The purpose of this study was to determine the effect of common transcranial magnetic stimulation (TMS) waveforms (monophasic and biphasic) on resting motor threshold (RMT), active motor threshold (AMT), and motor evoked potential (MEP) amplitudes in the biceps and first dorsal interosseous (FDI) because waveforms may affect motor targets differently. Additionally, we determined the test-retest reliability of TMS metrics for each stimulation type and muscle.

Methods: Ten individuals participated in two sessions of single-pulse TMS delivered to the motor cortex perpendicular to the central sulcus. MEPs were normalized to the maximum EMG signal during contraction and were recorded at …


Estimating Affective States In Virtual Reality Environments Using The Electroencephalogram, Meghan R. Kumar Jan 2021

Estimating Affective States In Virtual Reality Environments Using The Electroencephalogram, Meghan R. Kumar

Theses and Dissertations

Recent interest in high-performance virtual reality (VR) headsets has motivated research efforts to increase the user's sense of immersion via feedback of physiological measures. This work presents the use of electroencephalographic (EEG) measurements during observation of immersive VR videos to estimate the user's affective state. The EEG of 30 participants were recorded as each passively viewed a series of one minute immersive VR video clips and subjectively rated their level of valence, arousal, dominance, and liking. Correlates between EEG spectral bands and the subjective ratings were analyzed to identify statistically significant frequencies and electrode locations across participants. Model feasibility and …


Intermittent Theta Burst Stimulation: Application To Spinal Cord Injury Rehabilitation And Computational Modeling, Neil Mittal Jan 2021

Intermittent Theta Burst Stimulation: Application To Spinal Cord Injury Rehabilitation And Computational Modeling, Neil Mittal

Theses and Dissertations

Loss of motor function from spinal cord injuries (SCI) results in loss of independence. Rehabilitation efforts are targeted to enhance the ability to perform activities of daily living (ADLs), but outcomes from physical therapy alone are often insufficient. Neuromodulation techniques that induce neuroplasticity may push the limits on recovery. Neuromodulation by intermittent theta burst transcranial magnetic stimulation (iTBS) induces neuroplasticity by increasing corticomotor excitability, though this has most frequently been studied with motor targets and on individuals not in need of rehabilitation. Increased corticomotor excitability is associated with motor learning. The response to iTBS, however, is highly variable and unpredictable, …


Evaluating Neuromuscular Function Of The Biceps Brachii After Spinal Cord Injury: Assessment Of Voluntary Activation And Motor Evoked Potential Input-Output Curves Using Transcranial Magnetic Stimulation, Thibault Roumengous Jan 2021

Evaluating Neuromuscular Function Of The Biceps Brachii After Spinal Cord Injury: Assessment Of Voluntary Activation And Motor Evoked Potential Input-Output Curves Using Transcranial Magnetic Stimulation, Thibault Roumengous

Theses and Dissertations

Activation of upper limb muscles is important for independent living after cervical spinal cord injury (SCI) that results in tetraplegia. An emerging, non-invasive approach to address post-SCI muscle weakness is modulation of the nervous system. A long-term goal is to develop neuromodulation techniques to reinnervate (i.e. resupply nerve to) muscle fiber and thereby increase muscle function in individuals with tetraplegia. Towards this goal, developing monitoring techniques to quantify neuromuscular function is needed to better direct neurorehabilitation. Assessment of voluntary activation (VA) is a promising approach because the location of the stimulus can be applied cortically using transcranial magnetic stimulation (TMS) …


The Effect Of Intermittent Theta Burst Stimulation On Biceps Corticomotor Excitability In Non-Impaired Individuals And Individuals With Tetraplegia, Blaize Majdic Jan 2020

The Effect Of Intermittent Theta Burst Stimulation On Biceps Corticomotor Excitability In Non-Impaired Individuals And Individuals With Tetraplegia, Blaize Majdic

Theses and Dissertations

Neuromodulation of the primary motor cortex (M1) in pair with physical therapy may be a promising method for improving motor outcomes after spinal cord injury (SCI). Increased excitability of the corticospinal motor pathways (i.e. corticomotor excitability) has shown to be associated with improved motor learning and skill acquisition. Intermittent theta burst stimulation (iTBS) is a form of non-invasive brain stimulation which can increase corticomotor excitability, as measured by an increase in the amplitude of motor evoked potentials (MEPs). However, the ability for iTBS to increase the corticomotor excitability of proximal muscles such as the biceps, and muscles affected by spinal …


Design And Testing Of An Agonist-Antagonist Position-Impedance Controlled Myoelectric Prosthesis, Christopher Aymonin Jan 2019

Design And Testing Of An Agonist-Antagonist Position-Impedance Controlled Myoelectric Prosthesis, Christopher Aymonin

Theses and Dissertations

Intuitive prosthetic control is limited by the inability to easily convey intention and perceive physical requirements of the task. Rather than providing haptic feedback and allowing users to consciously control every component of manipulation, relegating some aspects of control to the device may simplify operation. This study focuses on the development and testing of a control scheme able to identify object stiffness and regulate impedance. The system includes an algorithm to detect the apparent stiffness of an object, a proportional nonlinear EMG control algorithm for interpreting a user’s desired grasp aperture, and an antagonistically acting impedance controller. Performance of a …


Development Of Novel Models To Study Deep Brain Effects Of Cortical Transcranial Magnetic Stimulation, Farheen Syeda Jan 2018

Development Of Novel Models To Study Deep Brain Effects Of Cortical Transcranial Magnetic Stimulation, Farheen Syeda

Theses and Dissertations

Neurological disorders require varying types and degrees of treatments depending on the symptoms and underlying causes of the disease. Patients suffering from medication-refractory symptoms often undergo further treatment in the form of brain stimulation, e.g. electroconvulsive therapy (ECT), transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), or transcranial magnetic stimulation (TMS). These treatments are popular and have been shown to relieve various symptoms for patients with neurological conditions. However, the underlying effects of the stimulation, and subsequently the causes of symptom-relief, are not very well understood. In particular, TMS is a non-invasive brain stimulation therapy which uses time-varying magnetic …


Electrophysiology Of Basal Ganglia (Bg) Circuitry And Dystonia As A Model Of Motor Control Dysfunction, Deepak Kumbhare Jan 2016

Electrophysiology Of Basal Ganglia (Bg) Circuitry And Dystonia As A Model Of Motor Control Dysfunction, Deepak Kumbhare

Theses and Dissertations

The basal ganglia (BG) is a complex set of heavily interconnected nuclei located in the central part of the brain that receives inputs from the several areas of the cortex and projects via the thalamus back to the prefrontal and motor cortical areas. Despite playing a significant part in multiple brain functions, the physiology of the BG and associated disorders like dystonia remain poorly understood. Dystonia is a devastating condition characterized by ineffective, twisting movements, prolonged co-contractions and contorted postures. Evidences suggest that it occurs due to abnormal discharge patterning in BG-thalamocortocal (BGTC) circuitry. The central purpose of this study …


Modification And Evaluation Of A Brain Computer Interface System To Detect Motor Intention, Christopher V. Hagerty-Hoff Jan 2015

Modification And Evaluation Of A Brain Computer Interface System To Detect Motor Intention, Christopher V. Hagerty-Hoff

Theses and Dissertations

It is widely understood that neurons within the brain produce electrical activity, and electroencephalography—a technique used to measure biopotentials with electrodes placed upon the scalp—has been used to observe it. Today, scientists and engineers work to interface these electrical neural signals with computers and machines through the field of Brain-Computer Interfacing (BCI). BCI systems have the potential to greatly improve the quality of life of physically handicapped individuals by replacing or assisting missing or debilitated motor functions. This research thus aims to further improve the efficacy of the BCI based assistive technologies used to aid physically disabled individuals. This study …