Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Effects Of Il-10 On Local Cell Populations And Functional Recovery Following Vml Injury, Zain Blackwell Dec 2021

Effects Of Il-10 On Local Cell Populations And Functional Recovery Following Vml Injury, Zain Blackwell

Biomedical Engineering Undergraduate Honors Theses

Volumetric muscle loss (VML) injuries are prevalent in both military personnel suffering from battlefield related incidents, and civilians following severe motor accidents. Despite its prevalence, VML has no pro-regenerative clinical treatments in place to recover some of the functional capabilities of the damaged muscle. Free flap grafting, debridement of damaged tissue, and physical therapy are the only clinical standards available that offer little functional recovery benefits, even after years of consistent treatment. In this study, anti-inflammatory cytokine interleukin-10 in conjunction with autologous minced muscle was assessed as a possible treatment for VML injuries and its influences on cellular behavior within …


Experimental And Analysis Of Electromagnetic Characterization Of Biological And Non-Biological Materials In Microwave, Millimeter-Wave, And Terahertz Frequency Bands, Nagma Vohra Jul 2021

Experimental And Analysis Of Electromagnetic Characterization Of Biological And Non-Biological Materials In Microwave, Millimeter-Wave, And Terahertz Frequency Bands, Nagma Vohra

Graduate Theses and Dissertations

The goal of this research is to characterize the electromagnetic properties of biological and non-biological materials at terahertz (THz), millimeter-wave, and microwave frequency bands. The biological specimens are measured using the THz imaging and spectroscopy system, whereas the non-biological materials are measured using the microwave and millimeter-wave free-space system. These facilities are located in the Engineering Research Center at the University of Arkansas. The THz imaging system (TPS 3000) uses a Ti-Sapphire laser directed on the photoconductive antennas to generate a THz time domain pulse. Upon using the Fourier Transform, the spectrum of the pulsed THz signal includes frequencies from …


Effects Of Ambient And Laser Light On Water Evaporation From The Surface Of Polyurethane Swabs Doped With Surfactant, Collin Campbell May 2019

Effects Of Ambient And Laser Light On Water Evaporation From The Surface Of Polyurethane Swabs Doped With Surfactant, Collin Campbell

Chemical Engineering Undergraduate Honors Theses

Polyurethane swabs are a common instrument for environmental sampling in the food, medical, and forensic fields due to their high recovery of organisms like viruses, spores, and bacteria. For sampling microbes in food and medical facilities, storage of the collected samples occurs under the absence of light to promote growth for more accurate testing. In the forensic fields, microbial growth results in sample contamination so the inhibition of this growth requires the drying of the swabs. This work studies the evaporation rates of water from polyurethane swabs under zero watt incident light, 30 W fluorescent bulb, 50 mW 532 nm …


In-Vitro Simulation Of Acute Ischemic Stroke, Paolo Garcia May 2018

In-Vitro Simulation Of Acute Ischemic Stroke, Paolo Garcia

Biomedical Engineering Undergraduate Honors Theses

Acute ischemic stroke (AIS) is a condition that involves the occlusion of a blood vessel within the brain, effectively preventing the passage of oxygen and nutrients. AIS is highly prevalent in the United States, where nearly 795,000 strokes happen per year and 87% of those are ischemic. From a medical standpoint, the obstructing clot can be removed with the use of a stroke retrieval device. However, a need arises for testing the aforementioned devices on a patient’s specific vascular geometries in order to increase the likelihood of a successful procedure. Outlined is a process for developing a physical simulation of …


Comparison Of Varying Tissue Freezing Methods On Murine Colonic Tissue, James Hughes May 2018

Comparison Of Varying Tissue Freezing Methods On Murine Colonic Tissue, James Hughes

Biomedical Engineering Undergraduate Honors Theses

Histology often requires a tissue specimen to be embedded so that it may be sectioned, stained, and mounted on a microscope slide for viewing. One common method of tissue embedding for rapid histology is freezing, since freezing allows tissue to be stored without the need for fixing. Frozen tissue is often embedded in a medium such as Optimal Cutting Temperature (OCT) compound so that it can be sectioned using a cryostat. However, factors such as ice-crystal formation during the freezing process can cause damage to the tissue. As such, the protocol used to freeze the tissue can affect the quality …


Characterization Of Murine Breast Cancer Cell Lines For Anti-Cancer Vaccine, Haven N. Frazier May 2017

Characterization Of Murine Breast Cancer Cell Lines For Anti-Cancer Vaccine, Haven N. Frazier

Biological Sciences Undergraduate Honors Theses

Breast cancer is the most commonly diagnosed cancer in women and the second leading cause of cancer death among women in the United States (1). While treatments involving radiation and chemotherapy currently exist, disease must be detected early in order for the treatments to be somewhat effective, and there is no effective treatment after metastasis occurs (2). Additionally, current therapies do not mitigate tumor immunosuppression. Decreasing the tumor-associated immunosuppressive conditions while activating antitumor immunity could prevent recurrence and metastasis, possibly leading to an effective treatment for cancer (3). Tumor cell vaccines could possibly address this issue and have become a …


Optical Imaging Of Metabolic Adaptability As A Biomarker For Metastatic Potential In Breast Cancer Cells, Mason G. Harper May 2017

Optical Imaging Of Metabolic Adaptability As A Biomarker For Metastatic Potential In Breast Cancer Cells, Mason G. Harper

Biomedical Engineering Undergraduate Honors Theses

Breast cancer metastasis is the main cause for mortality in breast cancer patients. However, knowledge of metastatic recurrence is limited, and there is a need to understand metastatic recurrence in order to treat breast cancer patients more effectively. Highly invasive metastatic breast cancer has shown to exhibit metabolic adaptability, transitioning from glycolysis to oxidative phosphorylation in the presence of microenvironmental stress. NADH and FAD are naturally occurring cofactor products during glycolysis and oxidative phosphorylation, respectively, and they are of particular importance during these metabolic processes due to their endogenous fluorescence. Measuring the ratio of fluorescence intensities of these cofactors through …


Multiphoton Imaging Of Labeled Breast Cancer Cells To Quantify Intra And Extracellular Receptors, Sydney C. Wiggins May 2016

Multiphoton Imaging Of Labeled Breast Cancer Cells To Quantify Intra And Extracellular Receptors, Sydney C. Wiggins

Biomedical Engineering Undergraduate Honors Theses

Every year 200,000 women in the United States are diagnosed with breast cancer. Of the cases diagnosed, 10% -15% are classified as triple negative breast cancer (TNBC) due to the absence of estrogen, progesterone, and HER-2/Neu receptors. This breast cancer sub-type is markedly more aggressive and twice as likely to develop in premenopausal women. TNBC is resistant to endocrine therapies and current targeted agents, making clinical need for the development of validated therapeutics for TNBC a pressing matter. To initiate drug development, the internalization of directly immunolabeled epidermal growth factor receptors (EGFR) in SK-BR-3 human breast adenocarcinoma cells was quantitated …


Micellular Electrokinetic Chromatography For Studying Amyloid Beta Oligomer Membrane Affinity, Andrew Bryson May 2016

Micellular Electrokinetic Chromatography For Studying Amyloid Beta Oligomer Membrane Affinity, Andrew Bryson

Biomedical Engineering Undergraduate Honors Theses

Amyloid Beta (Aβ) was the major focus of this study. It is a peptide that is present in the brain with a high tendency to self-aggregate. When this protein aggregates, it forms oligomers and protofibrils which in turn are deposited as senile plaques in the brain. The reason for the concern with these plaques is their association with the neurological disorder Alzheimer’s disease. It has been found that the most dangerous oligomers are formed in a portion of the plasma membrane known as lipid rafts. The purpose of this study was to understand how micelles affect the aggregation properties of …


Development Of A Microfluidic Device Coupled To Microdialysis Sampling For The Pre-Concentration Of Cytokines, Randy Francisco Espinal Cabrera May 2012

Development Of A Microfluidic Device Coupled To Microdialysis Sampling For The Pre-Concentration Of Cytokines, Randy Francisco Espinal Cabrera

Graduate Theses and Dissertations

A proof-of-concept microfluidic device combined with heparin-immobilized magnetic beads was created to concentrate cytokine proteins collected from microdialysis samples. Cytokines are known to be related to several diseases such as cancer, and Parkinson's diseases, so to be able to develop more effective diseases treatments their interactions have to be well understood. Amine-functionalized polystyrene and carboxyl-functionalized magnetic microspheres of ~6.0 ìm in diameter were used to immobilize heparin. The amount of heparin immobilized on polystyrene beads was 5.82 x 10-8 ± 0.36 x 10-8 M per 1.0 x 106 beads and for magnetic beads was 0.64 x 10-8 ± 0.01 x …