Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 181 - 210 of 355

Full-Text Articles in Biomedical Engineering and Bioengineering

Nanosecond Electric Pulses Differentially Affect Inward And Outward Currents In Patch Clamped Adrenal Chromaffin Cells, Lisha Yang, Gale L. Craviso, P. Thomas Vernier, Indira Chatterjee, Normand Leblanc Jul 2017

Nanosecond Electric Pulses Differentially Affect Inward And Outward Currents In Patch Clamped Adrenal Chromaffin Cells, Lisha Yang, Gale L. Craviso, P. Thomas Vernier, Indira Chatterjee, Normand Leblanc

Bioelectrics Publications

This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V) relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa), whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa), a Ca2+-activated K+ current (IK(Ca)), and a sustained voltage-dependent delayed rectifier K+ current (IKV). A constant-voltage step protocol was next used to monitor peak inward and late …


Multi-Material Mesh Representation Of Anatomical Structures For Deep Brain Stimulation Planning, Tanweer Rashid Jul 2017

Multi-Material Mesh Representation Of Anatomical Structures For Deep Brain Stimulation Planning, Tanweer Rashid

Computational Modeling & Simulation Engineering Theses & Dissertations

The Dual Contouring algorithm (DC) is a grid-based process used to generate surface meshes from volumetric data. However, DC is unable to guarantee 2-manifold and watertight meshes due to the fact that it produces only one vertex for each grid cube. We present a modified Dual Contouring algorithm that is capable of overcoming this limitation. The proposed method decomposes an ambiguous grid cube into a set of tetrahedral cells and uses novel polygon generation rules that produce 2-manifold and watertight surface meshes with good-quality triangles. These meshes, being watertight and 2-manifold, are geometrically correct, and therefore can be used to …


Computing Spatiotemporal Heat Maps Of Lipid Electropore Formation: A Statistical Approach, Willy Wriggers, Frederica Castellani, Julio A. Kovacs, P. Thomas Vernier Apr 2017

Computing Spatiotemporal Heat Maps Of Lipid Electropore Formation: A Statistical Approach, Willy Wriggers, Frederica Castellani, Julio A. Kovacs, P. Thomas Vernier

Mechanical & Aerospace Engineering Faculty Publications

We extend the multiscale spatiotemporal heat map strategies originally developed for interpreting molecular dynamics simulations of well-structured proteins to liquids such as lipid bilayers and solvents. Our analysis informs the experimental and theoretical investigation of electroporation, that is, the externally imposed breaching of the cell membrane under the influence of an electric field of sufficient magnitude. To understand the nanoscale architecture of electroporation, we transform time domain data of the coarse-grained interaction networks of lipids and solvents into spatial heat maps of the most relevant constituent molecules. The application takes advantage of our earlier graph-based activity functions by accounting for …


A Balanced Approach To Adaptive Probability Density Estimation, Julio Kovacs, Cailee Helmick, Willy Wriggers Apr 2017

A Balanced Approach To Adaptive Probability Density Estimation, Julio Kovacs, Cailee Helmick, Willy Wriggers

Mechanical & Aerospace Engineering Faculty Publications

Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE) method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests …


Development Of An Atlas-Based Segmentation Of Cranial Nerves Using Shape-Aware Discrete Deformable Models For Neurosurgical Planning And Simulation, Sharmin Sultana Apr 2017

Development Of An Atlas-Based Segmentation Of Cranial Nerves Using Shape-Aware Discrete Deformable Models For Neurosurgical Planning And Simulation, Sharmin Sultana

Computational Modeling & Simulation Engineering Theses & Dissertations

Twelve pairs of cranial nerves arise from the brain or brainstem and control our sensory functions such as vision, hearing, smell and taste as well as several motor functions to the head and neck including facial expressions and eye movement. Often, these cranial nerves are difficult to detect in MRI data, and thus represent problems in neurosurgery planning and simulation, due to their thin anatomical structure, in the face of low imaging resolution as well as image artifacts. As a result, they may be at risk in neurosurgical procedures around the skull base, which might have dire consequences such as …


Low Temperature Plasma For The Treatment Of Epithelial Cancer Cells, Soheila Mohades Apr 2017

Low Temperature Plasma For The Treatment Of Epithelial Cancer Cells, Soheila Mohades

Electrical & Computer Engineering Theses & Dissertations

Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer …


Quantitative Limits On Small Molecule Transport Via The Electropermeome - Measuring And Modeling Single Nanosecond Perturbations, Esin B. Sözer, Zachary A. Levine, P. Thomas Vernier Mar 2017

Quantitative Limits On Small Molecule Transport Via The Electropermeome - Measuring And Modeling Single Nanosecond Perturbations, Esin B. Sözer, Zachary A. Levine, P. Thomas Vernier

Bioelectrics Publications

The detailed molecular mechanisms underlying the permeabilization of cell membranes by pulsed electric fields (electroporation) remain obscure despite decades of investigative effort. To advance beyond descriptive schematics to the development of robust, predictive models, empirical parameters in existing models must be replaced with physics- and biology-based terms anchored in experimental observations. We report here absolute values for the uptake of YO-PRO-1, a small-molecule fluorescent indicator of membrane integrity, into cells after a single electric pulse lasting only 6 ns. We correlate these measured values, based on fluorescence microphotometry of hundreds of individual cells, with a diffusion-based geometric analysis of pore-mediated …


Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu Feb 2017

Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu

Mechanical & Aerospace Engineering Faculty Publications

The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na, Ca2+, K channels). …


Impact Of A Localized Lean Six Sigma Implementation On Overall Patient Safety And Process Efficiency, Luvianca Gil, Pilar Pazos, Mamadou Seck, Rolando Delaguila Jan 2017

Impact Of A Localized Lean Six Sigma Implementation On Overall Patient Safety And Process Efficiency, Luvianca Gil, Pilar Pazos, Mamadou Seck, Rolando Delaguila

Engineering Management & Systems Engineering Faculty Publications

Continuous quality improvement tools have caught the attention of the Health Care Industry as a solution to process efficiency, patient safety and cost reduction. This research explores the impact of a Lean Six Sigma (LSS) process improvement initiative in overall process efficiency and patient safety in two Labor and Delivery (L+D) units of two large hospital providers. This study focuses on the application of modeling and simulation methodology to investigate the influence of a localized process improvement intervention on the overall L+D unit output, by considering patient flow, system capacity and unit performance. The simulation models capacity profiles and patient …


Electrotransfer Of Plasmid Dna Radiosensitizes B16f10 Tumors Through Activation Of Immune Response, Monika Savarin, Urska Kamensek, Maja Cemazar, Richard Heller, Gregor Sersa Jan 2017

Electrotransfer Of Plasmid Dna Radiosensitizes B16f10 Tumors Through Activation Of Immune Response, Monika Savarin, Urska Kamensek, Maja Cemazar, Richard Heller, Gregor Sersa

Bioelectrics Publications

Background. Tumor irradiation combined with adjuvant treatments, either vascular targeted or immunomodulatory, is under intense investigation. Gene electrotransfer of therapeutic genes is one of these approaches. The aim of this study was to determine, whether gene electrotransfer of plasmid encoding shRNA for silencing endoglin, with vascular targeted effectiveness, can radiosensitize melanoma B16F10 tumors.

Materials and methods. The murine melanoma Bl6F10 tumors, growing on the back of C57BI/6 mice, were treated by triple gene electrotransfer and irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice. Furthermore, histological analysis of tumors (necrosis, apoptosis, …


Biochemical And Histological Differences Between Costal And Articular Cartilages, Michael W. Stacey Jan 2017

Biochemical And Histological Differences Between Costal And Articular Cartilages, Michael W. Stacey

Bioelectrics Publications

Biologically, costal cartilage is an understudied tissue type and much is yet to be learned regarding underlying mechanisms related to form and function, and how these relate to disease states, specifically chest wall deformity. Chest wall deformities have a component of inheritance, implying underlying genetic causes; however the complexity of inheritance suggests multiple genetic components. At our Centre investigations were performed on gene expression of key select genes from costal cartilage removed at surgery of patients with chest wall deformity to show high expression of decorin, a key player in collagen fiber formation and growth. Also, the degree of tissue …


Electrosensitization Increases Antitumor Effectiveness Of Nanosecond Pulsed Electric Fields In Vivo, Claudia Muratori, Andrei G. Pakhomov, Loree Heller, Maura Casciola, Elena Gianulis, Sergey Grigoryev, Shu Xiao, Olga N. Pakhomova Jan 2017

Electrosensitization Increases Antitumor Effectiveness Of Nanosecond Pulsed Electric Fields In Vivo, Claudia Muratori, Andrei G. Pakhomov, Loree Heller, Maura Casciola, Elena Gianulis, Sergey Grigoryev, Shu Xiao, Olga N. Pakhomova

Bioelectrics Publications

Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-dose treatments for in vivo tumor ablation by nanosecond pulsed electric field. KLN 205 squamous carcinoma cells were embedded in an agarose gel or grown subcutaneously as tumors …


Transient Alt Activation Protects Human Primary Cells From Chromosome Instability Induced By Low Chronic Oxidative Stress, Elisa Coluzzi, Rossella Buonsante, Stefano Leone, Anthony J. Asmar, Kelley L. Miller, Daniela Cimini, Antonella Sgura Jan 2017

Transient Alt Activation Protects Human Primary Cells From Chromosome Instability Induced By Low Chronic Oxidative Stress, Elisa Coluzzi, Rossella Buonsante, Stefano Leone, Anthony J. Asmar, Kelley L. Miller, Daniela Cimini, Antonella Sgura

Bioelectrics Publications

Cells are often subjected to the effect of reactive oxygen species (ROS) as a result of both intracellular metabolism and exposure to exogenous factors. ROS-dependent oxidative stress can induce 8-oxodG within the GGG triplet found in the G-rich human telomeric sequence (TTAGGG), making telomeres highly susceptible to ROS-induced oxidative damage. Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes and their dysfunction is believed to affect a wide range of cellular and/or organismal processes. Acute oxidative stress was shown to affect telomere integrity, but how prolonged low level oxidative stress, which may be more physiologically relevant, affects telomeres …


Nanosecond Pulsed Electric Field Induced Changes In Cell Surface Charge Density, Diganta Dutta, Xavier-Lewis Palmer, Anthony Asmar, Michael Stacey, Shizhi Qian Jan 2017

Nanosecond Pulsed Electric Field Induced Changes In Cell Surface Charge Density, Diganta Dutta, Xavier-Lewis Palmer, Anthony Asmar, Michael Stacey, Shizhi Qian

Bioelectrics Publications

This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01 M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to …


Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li Jul 2016

Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li

Computer Science Theses & Dissertations

Medical and biological imaging technologies provide valuable visualization information of structure and function for an organ from the level of individual molecules to the whole object. Brain is the most complex organ in body, and it increasingly attracts intense research attentions with the rapid development of medical and bio-logical imaging technologies. A massive amount of high-dimensional brain imaging data being generated makes the design of computational methods for efficient analysis on those images highly demanded. The current study of computational methods using hand-crafted features does not scale with the increasing number of brain images, hindering the pace of scientific discoveries …


Microbubble Generation By Piezoelectric Transducers For Biomedical Studies, Mohammed Alkhazal Jul 2016

Microbubble Generation By Piezoelectric Transducers For Biomedical Studies, Mohammed Alkhazal

Electrical & Computer Engineering Theses & Dissertations

Bubbles induced by blast waves or shocks are speculated as the major cause of damage in biological cells in mild traumatic brain injuries (TBI). Microbubble collapse was found to induce noticeable cell detachment from the cell substrate, changes in focal adhesion, and biomechanics. To better understand the bubble mechanism, a system needs to be constructed which allows clear differentiation on the impact of bubbles from that of shocks. Such a generator needs to be low profile in order to place under a microscope. A piezoelectric transducer system was designed to meet the need. The system uses either a flat or …


A 'Tissue Model' To Study The Barrier Effects Of Living Tissues On The Reactive Species Generated By Surface Air Discharge, Tongtong He, Dingxin Liu, Han Xu, Zhichao Liu, Dehui Xu, Dong Li, Qiosong Li, Mingzhe Rong, Michael G. Kong May 2016

A 'Tissue Model' To Study The Barrier Effects Of Living Tissues On The Reactive Species Generated By Surface Air Discharge, Tongtong He, Dingxin Liu, Han Xu, Zhichao Liu, Dehui Xu, Dong Li, Qiosong Li, Mingzhe Rong, Michael G. Kong

Bioelectrics Publications

Gelatin gels are used as surrogates of human tissues to study their barrier effects on incoming reactive oxygen and nitrogen species (RONS) generated by surface air discharge. The penetration depth of nitrite into gelatin gel is measured in real time during plasma treatment, and the permeabilities of nitrite, nitrate, O3 and H2O2 through gelatin gel films are quantified by measuring their concentrations in the water underneath such films after plasma treatment. It is found that the penetration speed of nitrite increases linearly with the mass fraction of water in the gelatin gels, and the permeabilities of …


Experimental Assessment Of Mouse Sociability Using An Automated Image Processing Approach, Frency Varghese, Jessica A. Burket, Andrew D. Benson, Stephen I. Deutsch, Christian W. Zemlin May 2016

Experimental Assessment Of Mouse Sociability Using An Automated Image Processing Approach, Frency Varghese, Jessica A. Burket, Andrew D. Benson, Stephen I. Deutsch, Christian W. Zemlin

Electrical & Computer Engineering Faculty Publications

Mouse is the preferred model organism for testing drugs designed to increase sociability. We present a method to quantify mouse sociability in which the test mouse is placed in a standardized apparatus and relevant behaviors are assessed in three different sessions (called session I, II, and III). The apparatus has three compartments (see Figure 1), the left and right compartments contain an inverted cup which can house a mouse (called “stimulus mouse”). In session I, the test mouse is placed in the cage and its mobility is characterized by the number of transitions made between compartments. In session II, a …


Section Abstracts: Biomedical And General Engineering Apr 2016

Section Abstracts: Biomedical And General Engineering

Virginia Journal of Science

Abstracts of the Biomedical and General Engineering Section for the 94th Annual Virginia Academy of Science Meeting, May 18-20, 2016, at University of Mary Washington, Fredericksburg, VA.


Membrane Channel Gene Expression In Human Costal And Articular Chondrocytes, A. Asmar, R. Barrett-Jolley, A. Werner, R. Kelly Jr., M. Stacey Apr 2016

Membrane Channel Gene Expression In Human Costal And Articular Chondrocytes, A. Asmar, R. Barrett-Jolley, A. Werner, R. Kelly Jr., M. Stacey

Bioelectrics Publications

Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Sch€onberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human …


Non-Thermal Atmospheric-Pressure Plasma For Sterilization Of Surfaces And Biofilms, Johanna Ursula Neuber Apr 2016

Non-Thermal Atmospheric-Pressure Plasma For Sterilization Of Surfaces And Biofilms, Johanna Ursula Neuber

Electrical & Computer Engineering Theses & Dissertations

Bacterial resistance to antimicrobial methods is a critical issue in many fields of medicine. This work describes the studies performed to characterize and optimize the bacterial inactivation effects of a non-thermal atmospheric-pressure plasma brush and plasma jet on a laminate surface inoculated with Acinetobacter baumannii and Staphylococcus aureus, and a cultivated Enterococcus faecalis biofilm, respectively. These treatments are pilot studies for eventual application to surface sterilization in hospitals and root canal disinfection. To evaluate bacterial inactivation, after treatment and recovery, the bacterial colony forming units (CFUs) are counted. Several different methods are used to optimize the antimicrobial effect. For the …


Categorizing Fetal Heart Rate Variability With And Without Visual Aids, Amanda J. Ashdown, Mark W. Scerbo, Lee A. Belfore Ii, Stephen S. Davis, Alfred Z. Abuhamad Jan 2016

Categorizing Fetal Heart Rate Variability With And Without Visual Aids, Amanda J. Ashdown, Mark W. Scerbo, Lee A. Belfore Ii, Stephen S. Davis, Alfred Z. Abuhamad

Psychology Faculty Publications

Objective This study examined the ability of clinicians to correctly categorize images of fetal heart rate (FHR) variability with and without the use of exemplars.

Study Design A sample of 33 labor and delivery clinicians inspected static FHR images and categorized them into one of four categories defined by the National Institute of Child Health and Human Development (NICHD) based on the amount of variability within absent, minimal, moderate, or marked ranges. Participants took part in three conditions: two in which they used exemplars representing FHR variability near the center or near the boundaries of each range, and a third …


Cell Electrosensitization Exists Only In Certain Electroporation Buffers, Janja Dermol, Olga N. Pakhomova, Andrei G. Pakhomov, Damijan Miklavčič Jan 2016

Cell Electrosensitization Exists Only In Certain Electroporation Buffers, Janja Dermol, Olga N. Pakhomova, Andrei G. Pakhomov, Damijan Miklavčič

Bioelectrics Publications

Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting …


Cytosolic Dna Sensor Upregulation Accompanies Dna Electrotransfer In B16.F10 Melanoma Cells, Katarina Znidar, Masa Bosnjak, Maja Cemazar, Loree C. Heller Jan 2016

Cytosolic Dna Sensor Upregulation Accompanies Dna Electrotransfer In B16.F10 Melanoma Cells, Katarina Znidar, Masa Bosnjak, Maja Cemazar, Loree C. Heller

Bioelectrics Publications

In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFN β mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16. F10 …


The Protective Role Of Mlcp-Mediated Erm Dephosphorylation In Endotoxin-Induced Lung Injury In Vitro And In Vivo, Anita Kovacs-Kasa, Boris A. Gorshkov, Kyung-Mi Kim, Sanjiv Kumar, Stephen M. Black, David J. Fulton, Christiana Dimitropoulou, John D. Catravas, Alexander D. Verin Jan 2016

The Protective Role Of Mlcp-Mediated Erm Dephosphorylation In Endotoxin-Induced Lung Injury In Vitro And In Vivo, Anita Kovacs-Kasa, Boris A. Gorshkov, Kyung-Mi Kim, Sanjiv Kumar, Stephen M. Black, David J. Fulton, Christiana Dimitropoulou, John D. Catravas, Alexander D. Verin

Bioelectrics Publications

The goal of this study was to investigate the role of MLC phosphatase (MLCP) in a LPS model of acute lung injury (ALI). We demonstrate that ectopic expression of a constitutively-active (C/A) MLCP regulatory subunit (MYPT1) attenuates the ability of LPS to increase endothelial (EC) permeability. Down-regulation of MYPT1 exacerbates LPS-induced expression of ICAM1 suggesting an anti-inflammatory role of MLCP. To determine whether MLCP contributes to LPS-induced ALI in vivo, we utilized a nanoparticle DNA delivery method to specifically target lung EC. Expression of a C/A MYPT1 reduced LPS-induced lung inflammation and vascular permeability. Further, increased expression of the …


Nanosecond Pulsed Platelet-Rich Plasma (Nsprp) Improves Mechanical And Electrial Cardiac Function Following Myocardial Reperfusion Injury, Barbara Y. Hargrave, Frency Varghese, Nektarios Barabutis, John Catravas, Christian Zemlin Jan 2016

Nanosecond Pulsed Platelet-Rich Plasma (Nsprp) Improves Mechanical And Electrial Cardiac Function Following Myocardial Reperfusion Injury, Barbara Y. Hargrave, Frency Varghese, Nektarios Barabutis, John Catravas, Christian Zemlin

Medical Diagnostics & Translational Sciences Faculty Publications

Ischemia and reperfusion (I/R) of the heart is associated with biochemical and ionic changes that result in cardiac contractile and electrical dysfunction. In rabbits, platelet-rich plasma activated using nanosecond pulsed electric fields (nsPRP) has been shown to improve left ventricular pumping. Here, we demonstrate that nsPRP causes a similar improvement in mouse left ventricular function. We also show that nsPRP injection recovers electrical activity even before reperfusion begins. To uncover the mechanism of nsPRP action, we studied whether the enhanced left ventricular function in nsPRP rabbit and mouse hearts was associated with increased expression of heat-shock proteins and altered mitochondrial …


Modeling Early Stage Bone Regeneration With Biomimetic Electrospun Fibrinogen Nanofibers And Adipose-Derived Mesenchymal Stem Cells, Michael P. Francis, Yas M. Moghaddam-White, Patrick C. Sachs, Matthew J. Beckman, Stephen M. Chen, Gary L. Bowlin, Lynne W. Elmore, Shawn E. Holt Jan 2016

Modeling Early Stage Bone Regeneration With Biomimetic Electrospun Fibrinogen Nanofibers And Adipose-Derived Mesenchymal Stem Cells, Michael P. Francis, Yas M. Moghaddam-White, Patrick C. Sachs, Matthew J. Beckman, Stephen M. Chen, Gary L. Bowlin, Lynne W. Elmore, Shawn E. Holt

Medical Diagnostics & Translational Sciences Faculty Publications

The key events of the earliest stages of bone regeneration have been described in vivo although not yet modeled in an in vitro environment, where mechanistic cell-matrix-growth factor interactions can be more effectively studied. Here, we explore an early-stage bone regeneration model where the ability of electrospun fibrinogen (Fg) nanofibers to regulate osteoblastogenesis between distinct mesenchymal stem cells populations is assessed. Electrospun scaffolds of Fg, polydioxanone (PDO), and a Fg:PDO blend were seeded with adipose-derived mesenchymal stem cells (ASCs) and grown for 7-21 days in osteogenic differentiation media or control growth media. Scaffolds were analyzed weekly for histologic and molecular …


Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič Jan 2016

Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič

Bioelectrics Publications

For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1–10 ns, B: 11–100 ns and C: …


Computational Assessment Of Neural Probe And Brain Tissue Interface Under Transient Motion, Michael Polanco, Sebastian Bawab, Hangsoon Yoon Jan 2016

Computational Assessment Of Neural Probe And Brain Tissue Interface Under Transient Motion, Michael Polanco, Sebastian Bawab, Hangsoon Yoon

Mechanical & Aerospace Engineering Faculty Publications

The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial …


Spatio-Temporal Progression Of Cortical Activity Related To Continuous Overt And Covert Speech Production In A Reading Task, Jonathan S. Brumberg, Dean J. Krusienski, Shreya Chakrabarti, Aysegul Gunduz, Peter Brunner, Anthony L. Ritaccio, Gerwin Schalk Jan 2016

Spatio-Temporal Progression Of Cortical Activity Related To Continuous Overt And Covert Speech Production In A Reading Task, Jonathan S. Brumberg, Dean J. Krusienski, Shreya Chakrabarti, Aysegul Gunduz, Peter Brunner, Anthony L. Ritaccio, Gerwin Schalk

Electrical & Computer Engineering Faculty Publications

How the human brain plans, executes, and monitors continuous and fluent speech has remained largely elusive. For example, previous research has defined the cortical locations most important for different aspects of speech function, but has not yet yielded a definition of the temporal progression of involvement of those locations as speech progresses either overtly or covertly. In this paper, we uncovered the spatio-temporal evolution of neuronal population-level activity related to continuous overt speech, and identified those locations that shared activity characteristics across overt and covert speech. Specifically, we asked subjects to repeat continuous sentences aloud or silently while we recorded …