Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Molecular Biology

Nanosecond electric pulses

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič Jan 2016

Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič

Bioelectrics Publications

For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1–10 ns, B: 11–100 ns and C: …


Diffuse, Non-Polar Electropermeabilization And Reduced Propidium Uptake Distinguish The Effect Of Nanosecond Electric Pulses, Iurii Semenov, Christian W. Zemlin, Olga N. Pakhomova, Shu Xiao, Andrei G. Pakhomov Jan 2015

Diffuse, Non-Polar Electropermeabilization And Reduced Propidium Uptake Distinguish The Effect Of Nanosecond Electric Pulses, Iurii Semenov, Christian W. Zemlin, Olga N. Pakhomova, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Ca2+ activation and membrane electroporation by 10-ns and 4-ms electric pulses (nsEP and msEP) were compared in rat embryonic cardiomyocytes. The lowest electric field which triggered Ca2+ transients was expectedly higher for nsEP (36 kV/cm)than forms EP (0.09 kV/cm) but the respective doses were similar (190 and460 mJ/g). At higher intensities, both stimuli triggered prolonged firing in quiescent cells. An increase of basal Ca2+ level by N10 nM in cells with blocked voltage-gated Ca2+ channels and depleted Ca2+ depot occurred at 63 kV/cm (nsEP) or 0.14 kV/cm (msEP) and was regarded as electroporation threshold. These …