Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Clemson University

Controlled release

Publication Year
Publication

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Oral Delivery Of Peptide Drugs For Mitigation Of Crohn's Disease, Paul Blichmann Aug 2012

Oral Delivery Of Peptide Drugs For Mitigation Of Crohn's Disease, Paul Blichmann

All Theses

Protein drugs are typically administered intravenously, but this practice has clear disadvantages such as widespread circulation and swift clearance from the body. Orally delivered protein drugs are not yet available but potentially offer improved distribution, retention, and activity by use of protective matrices and cell-specific targeting. Much work has been done on delayed release formulations for the upper intestine, but there has not been overwhelming evidence of protection of peptides from gastric conditions. In many instances the large intestine may be a better release target due to lower proteolytic activity. Afflictions of the colon such as Inflammatory Bowel Disease and …


In Situ Photopolymerized Hydrogels For Enhancing Protein Delivery, Chien-Chi Lin Aug 2007

In Situ Photopolymerized Hydrogels For Enhancing Protein Delivery, Chien-Chi Lin

All Dissertations

In recent years, there has been immense interest in the utilization of photopolymerized hydrogels as carriers for controlled protein delivery and cell scaffolds for tissue engineering applications. Although poly(ethylene glycol) (PEG)-based hydrogels formed from mild photopolymerization methods have been suggested as biocompatible matrices that allow for safely encapsulating biomolecules including proteins, peptides, DNA, and cells, the adverse effects of photopolymerization reactions on the encapsulated proteins have largely been overlooked. In addition, conventional hydrophilic hydrogels fail to effectively control protein delivery rates due to their high permeability. These two problems are critical since the delivery of protein therapeutics from hydrogel matrices …