Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

A Microfluidic Device To Establish Concentration Gradients Using Reagent Density Differences, Qingjun Kong, Richard A. Able, Jr., Veronica Dudu, Maribel Vazquez Dec 2010

A Microfluidic Device To Establish Concentration Gradients Using Reagent Density Differences, Qingjun Kong, Richard A. Able, Jr., Veronica Dudu, Maribel Vazquez

Publications and Research

Microfabrication has become widely utilized to generate controlled microenvironments that establish chemical concentration gradients for a variety of engineering and life science applications. To establish microfluidic flow, the majority of existing devices rely upon additional facilities, equipment, and excessive reagent supplies, which together limit device portability as well as constrain device usage to individuals trained in technological disciplines. The current work presents our laboratory-developed bridged microLane system, which is a stand-alone device that runs via conventional pipette loading and can operate for several days without need of external machinery or additional reagent volumes. The bridged microLane is a two-layer polydimethylsiloxane ...


Metallic Nanoparticle On Micro Ring Resonator For Bio Optical Detection And Sensing, Ali Haddadpour, Yasha Yi Aug 2010

Metallic Nanoparticle On Micro Ring Resonator For Bio Optical Detection And Sensing, Ali Haddadpour, Yasha Yi

Publications and Research

We have numerically investigated the unique effects of metallic nanoparticle on the ring resonator, especially multiple Au nanoparticles on the micro ring resonator with the 4-port configuration on chip. For the Au nanoparticle, because it has smaller real refractive index than air and large absorption refractive index, we found that there is a blue shift for the ring resonance wavelength, instead of red shift normally observed for dielectric nanoparticles. The drop port intensity is strongly dependent on both number and size of nanoparticles, while relatively independent on position of nanoparticles. The correlation between the penetration depth of Au and the ...