Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Recent Advances In Bone Research 2022 Edition, Jean-Philippe Berteau, Laurent Pujo-Menjouet May 2022

Recent Advances In Bone Research 2022 Edition, Jean-Philippe Berteau, Laurent Pujo-Menjouet

Publications and Research

More and more scientific and engineering applications in bone research make pivotal advances in treating patients with orthopedics issues. Hence, bone research in the 21st century combines, inter alia, biology, chemistry, mathematics, and mechanics with complementary characteristics that help a holistic approach to bone-related pathologies. Nowadays, it is hard to connect new evidence when jargoning and money remain two significant obstacles to sharing knowledge. “Recent Advances In Bone Research” is a free book – no money involved at any stage - that combines the most recent efforts in bone research from several experts with different backgrounds, every expert seeks to …


Age And Sex Differences In Load-Induced Tibial Cortical Bone Surface Strain Maps, Alessandra Carriero, Behzad Javaheri, Neda Bassir Kazeruni, Andrew A. Pitsillides, Sandra J. Shefelbine Jan 2021

Age And Sex Differences In Load-Induced Tibial Cortical Bone Surface Strain Maps, Alessandra Carriero, Behzad Javaheri, Neda Bassir Kazeruni, Andrew A. Pitsillides, Sandra J. Shefelbine

Publications and Research

Bone adapts its architecture to the applied load; however, it is still unclear how bone mechano-adaptation is coordinated and why potential for adaptation adjusts during the life course. Previous animal models have suggested strain as the mechanical stimulus for bone adaptation, but yet it is unknown how mouse cortical bone load-related strains vary with age and sex. In this study, full-field strain maps (at 1 N increments up to 12 N) on the bone surface were measured in young, adult, and old (aged 10, 22 weeks, and 20 months, respectively), male and female C57BL/6J mice with load applied using a …


Composite Biomaterial Repair Strategy To Restore Biomechanical Function And Reduce Herniation Risk In An Ex Vivo Large Animal Model Of Intervertebral Disc Herniation With Varying Injury Severity, Warren W. Hom, Melanie Tschopp, Huizi A. Lin, Philip Nasser, Damien M. Laudier, Andrew C. Hecht, Steven B. Nicoll, James C. Iatridis May 2019

Composite Biomaterial Repair Strategy To Restore Biomechanical Function And Reduce Herniation Risk In An Ex Vivo Large Animal Model Of Intervertebral Disc Herniation With Varying Injury Severity, Warren W. Hom, Melanie Tschopp, Huizi A. Lin, Philip Nasser, Damien M. Laudier, Andrew C. Hecht, Steven B. Nicoll, James C. Iatridis

Publications and Research

Back pain commonly arises from intervertebral disc (IVD) damage including annulus fibrosus (AF) defects and nucleus pulposus (NP) loss. Poor IVD healing motivates developing tissue engineering repair strategies. This study evaluated a composite injectable IVD biomaterial repair strategy using carboxymethylcellulose-methylcellulose (CMC-MC) and genipincrosslinked fibrin (FibGen) that mimic NP and AF properties, respectively. Bovine ex vivo caudal IVDs were evaluated in cyclic compression-tension, torsion, and compression-to-failure tests to determine IVD biomechanical properties, height loss, and herniation risk following experimentally-induced severe herniation injury and discectomy (4 mm biopsy defect with 20% NP removed). FibGen with and without CMC-MC had failure strength similar …


Impoved Hardware Design Of Iot Prosthetic Device, Yu Wang, Warren Hunter, Xiaolin Chen, Housney Ahmed, Haneefah Safo Oct 2018

Impoved Hardware Design Of Iot Prosthetic Device, Yu Wang, Warren Hunter, Xiaolin Chen, Housney Ahmed, Haneefah Safo

Publications and Research

Our previous IoT based prosthetic arm prototype used servo motors to control finger movement through an Arduino Mega, which is connected to the muscle, pulse, and temperature sensors. The Arduino Mega was also connected to a Raspberry Pi 3 model B to transfer data from/to an online web application. One major limitation encountered during testing this prosthetic device was the space occupied by these components, which makes the device bulky. In addition, these servo motors cannot control the movement of the prosthetic device precisely. In this paper, we propose to improve on the existing prosthetic limb prototype by transitioning the …


Thermoresponsive, Redox-Polymerized Cellulosic Hydrogels Undergo In Situ Gelation And Restore Intervertebral Disc Biomechanics Post Discectomy, Devika Varma, H. A. Lin, R. G. Long, G. T. Gold, A. C. Hecht, J. C. Iadridis, Steven B. Nicoll Jan 2018

Thermoresponsive, Redox-Polymerized Cellulosic Hydrogels Undergo In Situ Gelation And Restore Intervertebral Disc Biomechanics Post Discectomy, Devika Varma, H. A. Lin, R. G. Long, G. T. Gold, A. C. Hecht, J. C. Iadridis, Steven B. Nicoll

Publications and Research

Back and neck pain are commonly associated with intervertebral disc (IVD) degeneration. Structural augmentation of diseased nucleus pulposus (NP) tissue with biomaterials could restore degeneration-related IVD height loss and degraded biomechanical behaviors; however, effective NP replacement biomaterials are not commercially available. This study developed a novel, crosslinked, dual-polymer network (DPN) hydrogel comprised of methacrylated carboxymethylcellulose (CMC) and methylcellulose (MC), and used in vitro, in situ and in vivo testing to assess its efficacy as an injectable, in situ gelling, biocompatible material that matches native NP properties and restores IVD biomechanical behaviors. Thermogelling MC was required to enable consistent and timely …