Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Life Sciences

Microfluidics

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Collective Chemotaxis Of Retinal Neural Cells From Drosophila Melanogaster In Controlled Microenvironments, Stephanie Zhang Jan 2018

Collective Chemotaxis Of Retinal Neural Cells From Drosophila Melanogaster In Controlled Microenvironments, Stephanie Zhang

Dissertations and Theses

More than 172 million people are influenced by a retinal disorder that stems from either age-related or developmental causes. Of those, 1.5 million people endure a developmental retinal disorder. In the developing retina, neural cells undergo a series of highly complicated differentiation and migration process. A main cause of these diseases is abnormal collective migration of neural progenitors hindering the retinogenesis process. However, our grasp of collective migration and signaling molecules, critical to the developing retina, is incompletely understood. Understanding the molecular mechanisms, such as the fibroblast growth factor pathway, that regulate glial and neuronal migration provides decisive insights in …


Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez Mar 2016

Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez

Publications and Research

BACKGROUND:

The developing visual system in Drosophila melanogaster provides an excellent model with which to examine the effects of changing microenvironments on neural cell migration via microfluidics, because the combined experimental system enables direct genetic manipulation, in vivo observation, and in vitro imaging of cells, post-embryo. Exogenous signaling from ligands such as fibroblast growth factor (FGF) is well-known to control glia differentiation, cell migration, and axonal wrapping central to vision.

NEW METHOD:

The current study employs a microfluidic device to examine how controlled concentration gradient fields of FGF are able to regulate the migration of vision-critical glia cells with and …


Role Of Epidermal Growth Factor-Triggered Pi3k/Akt Signaling In The Migration Of Medulloblastoma-Derived Cells, Veronica Dudu, Richard A. Able, Jr., Veronica Rotari, Qingjun Kong, Maribel Vazquez Dec 2012

Role Of Epidermal Growth Factor-Triggered Pi3k/Akt Signaling In The Migration Of Medulloblastoma-Derived Cells, Veronica Dudu, Richard A. Able, Jr., Veronica Rotari, Qingjun Kong, Maribel Vazquez

Publications and Research

Medulloblastoma (MB) is the most common brain cancer diagnosed among children. The cellular pathways that regulate MB invasion in response to environmental cues remain incompletely understood. Herein, we examine the migratory response of human MB-derived Daoy cells to different concentration profiles of Epidermal Growth Factor (EGF) using a microfluidic system. Our findings provide the first quantitative evidence that EGF concentration gradients modulate the chemotaxis of MB-derived cells in a dose-dependent manner via the EGF receptor (EGF-R). Data illustrates that higher concentration gradients caused increased number of cells to migrate. In addition, our results show that EGF-induced receptor phosphorylation triggered the …


Low Concentration Microenvironments Enhance The Migration Of Neonatal Cells Of Glial Lineage, Richard A. Able, Jr., Celestin Ngnabeuye, Cade Beck, Eric C. Holland, Maribel Vazquez Jun 2002

Low Concentration Microenvironments Enhance The Migration Of Neonatal Cells Of Glial Lineage, Richard A. Able, Jr., Celestin Ngnabeuye, Cade Beck, Eric C. Holland, Maribel Vazquez

Publications and Research

Glial tumors have demonstrated abilities to sustain growth via recruitment of glial progenitor cells (GPCs), which is believed to be driven by chemotactic cues. Previous studies have illustrated that mouse GPCs of different genetic backgrounds are able to replicate the dispersion pattern seen in the human disease. How GPCs with genetic backgrounds transformed by tumor paracrine signaling respond to extracellular cues via migration is largely unexplored, and remains a limiting factor in utilizing GPCs as therapeutic targets. In this study, we utilized a microfluidic device to examine the chemotaxis of three genetically-altered mouse GPC populations towards tumor conditioned media, as …