Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Biomedical Engineering and Bioengineering

Shipboard Design And Fabrication Of Custom 3d-Printed Soft Robotic Manipulators For The Investigation Of Delicate Deep-Sea Organisms, Daniel M. Vogt, Kaitlyn P. Becker, Brennan T. Phillips, Moritz A. Graule, Randi D. Rotjan, Timothy M. Shank, Erik E. Cordes, Robert J. Wood, David F. Gruber Aug 2018

Shipboard Design And Fabrication Of Custom 3d-Printed Soft Robotic Manipulators For The Investigation Of Delicate Deep-Sea Organisms, Daniel M. Vogt, Kaitlyn P. Becker, Brennan T. Phillips, Moritz A. Graule, Randi D. Rotjan, Timothy M. Shank, Erik E. Cordes, Robert J. Wood, David F. Gruber

Publications and Research

Soft robotics is an emerging technology that has shown considerable promise in deep-sea marine biological applications. It is particularly useful in facilitating delicate interactions with fragile marine organisms. This study describes the shipboard design, 3D printing and integration of custom soft robotic manipulators for investigating and interacting with deep-sea organisms. Soft robotics manipulators were tested down to 2224m via a Remotely-Operated Vehicle (ROV) in the Phoenix Islands Protected Area (PIPA) and facilitated the study of a diverse suite of soft-bodied and fragile marine life. Instantaneous feedback from the ROV pilots and biologists allowed for rapid re-design, such as adding ªfingernailsº ...


Inhibition Of Apoptosis Exacerbates Fatigue-Damage Tendon Injuries In An In Vivo Rat Model, R. Bell, M. A. Robles-Harris, M. Anderson, D. Laudier, M. B. Schaffler, E. L. Flatow, N. Andarawis-Puri Jan 2018

Inhibition Of Apoptosis Exacerbates Fatigue-Damage Tendon Injuries In An In Vivo Rat Model, R. Bell, M. A. Robles-Harris, M. Anderson, D. Laudier, M. B. Schaffler, E. L. Flatow, N. Andarawis-Puri

Publications and Research

Tendinopathy is a common and progressive musculoskeletal disease. Increased apoptosis is an end-stage tendinopathy manifestation, but its contribution to the pathology of the disease is unknown. A previously established in vivo model of fatigue-damage accumulation shows that increased apoptosis is correlated with the severity of induced tendon damage, even in early onset of the disease, supporting its implication in the pathogenesis of the disease. Consequently, this study aimed to determine: (1) whether apoptosis could be inhibited after fatigue damage and (2) whether its inhibition could lead to remodeling of the extracellular matrix (ECM) and pericellular matrix (PCM), to ultimately improve ...


Thermoresponsive, Redox-Polymerized Cellulosic Hydrogels Undergo In Situ Gelation And Restore Intervertebral Disc Biomechanics Post Discectomy, Devika Varma, H. A. Lin, R. G. Long, G. T. Gold, A. C. Hecht, J. C. Iadridis, Steven B. Nicoll Jan 2018

Thermoresponsive, Redox-Polymerized Cellulosic Hydrogels Undergo In Situ Gelation And Restore Intervertebral Disc Biomechanics Post Discectomy, Devika Varma, H. A. Lin, R. G. Long, G. T. Gold, A. C. Hecht, J. C. Iadridis, Steven B. Nicoll

Publications and Research

Back and neck pain are commonly associated with intervertebral disc (IVD) degeneration. Structural augmentation of diseased nucleus pulposus (NP) tissue with biomaterials could restore degeneration-related IVD height loss and degraded biomechanical behaviors; however, effective NP replacement biomaterials are not commercially available. This study developed a novel, crosslinked, dual-polymer network (DPN) hydrogel comprised of methacrylated carboxymethylcellulose (CMC) and methylcellulose (MC), and used in vitro, in situ and in vivo testing to assess its efficacy as an injectable, in situ gelling, biocompatible material that matches native NP properties and restores IVD biomechanical behaviors. Thermogelling MC was required to enable consistent and timely ...


Decreased Triple Network Connectivity In Patients With Recent Onset Post-Traumatic Stress Disorder After A Single Prolonged Trauma Exposure, Yang Liu, Liang Li, Baojuan Li, Na Feng, Lihong Li, Xi Zhang, Hongbing Lu, Hong Yin Oct 2017

Decreased Triple Network Connectivity In Patients With Recent Onset Post-Traumatic Stress Disorder After A Single Prolonged Trauma Exposure, Yang Liu, Liang Li, Baojuan Li, Na Feng, Lihong Li, Xi Zhang, Hongbing Lu, Hong Yin

Publications and Research

The triple network model provides a common framework for understanding affective and neurocognitive dysfunctions across multiple disorders, including central executive network (CEN), default mode network (DMN), and salience network (SN). Considering the effect of traumatic experience on post-traumatic stress disorder (PTSD), this study aims to explore the alteration of triple network connectivity in a specific PTSD induced by a single prolonged trauma exposure. With an arterial spin labeling sequence, three networks were first identified using independent component analysis among 10 PTSD patients and 10 healthy survivors, who experienced the same coal mining flood disaster. Then, the triple network connectivity was ...


Mutagenesis Of Human Alpha-Galactosidase A For The Treatment Of Fabry Disease, Erin Stokes Sep 2017

Mutagenesis Of Human Alpha-Galactosidase A For The Treatment Of Fabry Disease, Erin Stokes

All Dissertations, Theses, and Capstone Projects

Fabry disease is an X-linked lysosomal storage disorder caused by the deficiency of the enzyme, α-galactosidase A, which results in the accumulation of the lipid substrate. This accumulation results in obstruction of blood flow in patients and early demise at approximately 40-60 years of age. There is currently only one FDA approved treatment (Fabrazyme) classified as an enzyme replacement therapy. However, approximately 88% of patients experience a severe immune response that, rarely, can be fatal and is a huge cost burden at average $250,000 a year per patient. The structure of α-galactosidase A has been previously determined to be ...


A Drosophila Model To Examine Collective Migration During Retinogenesis, Caroline Pena, Stephanie Zhang, Mildred Kamara, Tadmiri Venkatesh, Maribel Vazquez Apr 2017

A Drosophila Model To Examine Collective Migration During Retinogenesis, Caroline Pena, Stephanie Zhang, Mildred Kamara, Tadmiri Venkatesh, Maribel Vazquez

Publications and Research

Retinal dysfunction is often caused by aberrant neural cell migration during development. In this study, we observed the migration of neural cells of the Drosophila melanogaster after marking cells of the 3rd instar larvae with the GAL4-UAS expression system when exposed to a concentration gradient of FGF-8 through the use of a microfluidic device. The glial and neuronal cell ratio in the developing brain was determined through immunofluorescent staining and observation. In future studies, a microfluidic device that mimics the developing Drosophila brain and retina will be designed in order to better understand the biological factors that affect the migration ...


Collective Behaviour In Video Viewing: A Thermodynamic Analysis Of Gaze Position, Kate Burleson-Lesser, Flaviano Morone, Paul Deguzman, Lucas C. Parra, Hernan Makse Jan 2017

Collective Behaviour In Video Viewing: A Thermodynamic Analysis Of Gaze Position, Kate Burleson-Lesser, Flaviano Morone, Paul Deguzman, Lucas C. Parra, Hernan Makse

Publications and Research

Videos and commercials produced for large audiences can elicit mixed opinions. We wondered whether this diversity is also reflected in the way individuals watch the videos. To answer this question, we presented 65 commercials with high production value to 25 individuals while recording their eye movements, and asked them to provide preference ratings for each video. We find that gaze positions for the most popular videos are highly correlated. To explain the correlations of eye movements, we model them as ªinteractionsº between individuals. A thermodynamic analysis of these interactions shows that they approach a ªcritical º point such that any ...


Electro-Chemotactic Fields Induce Cooperative Movement Of Cns Cells, Shawn Mishra, Stephen Redenti, Maribel Vazquez Oct 2016

Electro-Chemotactic Fields Induce Cooperative Movement Of Cns Cells, Shawn Mishra, Stephen Redenti, Maribel Vazquez

Publications and Research

Vision loss in adults with Age Related Macular Degeneration (AMD) is attributed to damage of retinal photoreceptor cells that initiate vision by absorbing light. Mouse models have suggested that transplantation of precursor cells may be a novel approach to restore vision. This project uses a combination of electrotactic and chemotactic stimuli to promote and guide CNS cell migration within a microdevice model.


P2x7r-Panx1 Complex Impairs Bone Mechanosignaling Under High Glucose Levels Associated With Type-1 Diabetes, Zeynep Seref-Ferlengez, Stephanie Maung, Mitchell B. Schaffler, David C. Spray, Sylvia O. Suadicani, Mia M. Thi May 2016

P2x7r-Panx1 Complex Impairs Bone Mechanosignaling Under High Glucose Levels Associated With Type-1 Diabetes, Zeynep Seref-Ferlengez, Stephanie Maung, Mitchell B. Schaffler, David C. Spray, Sylvia O. Suadicani, Mia M. Thi

Publications and Research

Type 1 diabetes (T1D) causes a range of skeletal problems, including reduced bone density and increased risk for bone fractures. However, mechanisms underlying skeletal complications in diabetes are still not well understood.We hypothesize that high glucose levels in T1D alters expression and function of purinergic receptors (P2Rs) and pannexin 1 (Panx1) channels, and thereby impairs ATP signaling that is essential for proper bone response to mechanical loading and maintenance of skeletal integrity. We first established a key role for P2X7 receptor-Panx1 in osteocyte mechanosignaling by showing that these proteins are co-expressed to provide a major pathway for flow-induced ATP ...


Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez Mar 2016

Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez

Publications and Research

BACKGROUND:

The developing visual system in Drosophila melanogaster provides an excellent model with which to examine the effects of changing microenvironments on neural cell migration via microfluidics, because the combined experimental system enables direct genetic manipulation, in vivo observation, and in vitro imaging of cells, post-embryo. Exogenous signaling from ligands such as fibroblast growth factor (FGF) is well-known to control glia differentiation, cell migration, and axonal wrapping central to vision.

NEW METHOD:

The current study employs a microfluidic device to examine how controlled concentration gradient fields of FGF are able to regulate the migration of vision-critical glia cells with and ...


Genesis And Growth Of Extracellular Vesicle-Derived Microcalcification In Atherosclerotic Plaques, Joshua D. Hutcheson, Claudia Goettsch, Sergio Bertazzo, Natalia Maldonado, Jessica L. Ruiz, Wilson Goh, Katsumi Yabusaki, Tyler Faits, Carlijn Bouten, Gregory Franck, Thibaut Quillard, Peter Libby, Masanori Aikawa, Sheldon Weinbaum, Elena Aikawa Mar 2016

Genesis And Growth Of Extracellular Vesicle-Derived Microcalcification In Atherosclerotic Plaques, Joshua D. Hutcheson, Claudia Goettsch, Sergio Bertazzo, Natalia Maldonado, Jessica L. Ruiz, Wilson Goh, Katsumi Yabusaki, Tyler Faits, Carlijn Bouten, Gregory Franck, Thibaut Quillard, Peter Libby, Masanori Aikawa, Sheldon Weinbaum, Elena Aikawa

Publications and Research

Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the ...


Monitoring The Progression Of Spontaneous Articular Cartilage Healing With Infrared Spectroscopy, Megan P. O'Brien, Madhuri Penmatsa, Uday Palukuru, Paul West, Xu Yang, Mathias P. G. Bostrom, Theresa Freeman, Nancy Pleshko Jul 2015

Monitoring The Progression Of Spontaneous Articular Cartilage Healing With Infrared Spectroscopy, Megan P. O'Brien, Madhuri Penmatsa, Uday Palukuru, Paul West, Xu Yang, Mathias P. G. Bostrom, Theresa Freeman, Nancy Pleshko

Publications and Research

Objective. Evaluation of early compositional changes in healing articular cartilage is critical for understanding tissue repair and for therapeutic decision-making. Fourier transform infrared imaging spectroscopy (FT-IRIS) can be used to assess the molecular composition of harvested repair tissue. Furthermore, use of an infrared fiber-optic probe (IFOP) has the potential for translation to a clinical setting to provide molecular information in situ. In the current study, we determined the feasibility of IFOP assessment of cartilage repair tissue in a rabbit model, and assessed correlations with gold-standard histology.

Design. Bilateral osteochondral defects were generated in mature white New Zealand rabbits, and IFOP ...


Role Of Epidermal Growth Factor-Triggered Pi3k/Akt Signaling In The Migration Of Medulloblastoma-Derived Cells, Veronica Dudu, Richard A. Able, Jr., Veronica Rotari, Qingjun Kong, Maribel Vazquez Dec 2012

Role Of Epidermal Growth Factor-Triggered Pi3k/Akt Signaling In The Migration Of Medulloblastoma-Derived Cells, Veronica Dudu, Richard A. Able, Jr., Veronica Rotari, Qingjun Kong, Maribel Vazquez

Publications and Research

Medulloblastoma (MB) is the most common brain cancer diagnosed among children. The cellular pathways that regulate MB invasion in response to environmental cues remain incompletely understood. Herein, we examine the migratory response of human MB-derived Daoy cells to different concentration profiles of Epidermal Growth Factor (EGF) using a microfluidic system. Our findings provide the first quantitative evidence that EGF concentration gradients modulate the chemotaxis of MB-derived cells in a dose-dependent manner via the EGF receptor (EGF-R). Data illustrates that higher concentration gradients caused increased number of cells to migrate. In addition, our results show that EGF-induced receptor phosphorylation triggered the ...


Computational Model Of Neuron-Astrocyte Interputational Model Of Neuron-Astrocyte Interactions During Focal Seizure Generationactions During Focal Seizure Generation, Davide Reato, Mario Cammarota, Lucas C. Parra, Giorgio Carmignoto Oct 2012

Computational Model Of Neuron-Astrocyte Interputational Model Of Neuron-Astrocyte Interactions During Focal Seizure Generationactions During Focal Seizure Generation, Davide Reato, Mario Cammarota, Lucas C. Parra, Giorgio Carmignoto

Publications and Research

Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to epileptiform activity by increasing neuronal excitability ...


Sendai Virus-Based Liposomes Enable Targeted Cytosolic Delivery Of Nanoparticles In Brain Tumor-Derived Cells, Veronica Dudu, Veronica Rotari, Maribel Vazquez Feb 2012

Sendai Virus-Based Liposomes Enable Targeted Cytosolic Delivery Of Nanoparticles In Brain Tumor-Derived Cells, Veronica Dudu, Veronica Rotari, Maribel Vazquez

Publications and Research

BACKGROUND: Nanotechnology-based bioassays that detect the presence and/or absence of a combination of cell markers are increasingly used to identify stem or progenitor cells, assess cell heterogeneity, and evaluate tumor malignancy and/or chemoresistance. Delivery methods that enable nanoparticles to rapidly detect emerging, intracellular markers within cell clusters of biopsies will greatly aid in tumor characterization, analysis of functional state and development of treatment regimens.

RESULTS: Experiments utilized the Sendai virus to achieve in vitro, cytosolic delivery of Quantum dots in cells cultured from Human brain tumors. Using fluorescence microscopy and Transmission Electron Microscopy, in vitro experiments illustrated that ...


Migration And Invasion Of Brain Tumors, Richard A. Able, Jr., Veronica Dudu, Maribel Vazquez Nov 2011

Migration And Invasion Of Brain Tumors, Richard A. Able, Jr., Veronica Dudu, Maribel Vazquez

Publications and Research

Recent advances in molecular biology have led to new insights in the development, growth and infiltrative behaviors of primary brain tumors (Demuth and Berens, 2004; Huse and Holland, 2010; Johnson et al., 2009; Kanu et al., 2009). These tumors are derived from various brain cell lineages and have been historically classified on the basis of morphological and, more recently, immunohistochemical features with less emphasis on their underlying molecular pathogenesis (Huse and Holland, 2010). The detailed molecular characterization of brain tumors has laid the groundwork for augmentation of standard treatment with patient-specific designed targeted therapies (Johnson et al., 2009; Kanu et ...


Low Concentration Microenvironments Enhance The Migration Of Neonatal Cells Of Glial Lineage, Richard A. Able, Jr., Celestin Ngnabeuye, Cade Beck, Eric C. Holland, Maribel Vazquez Jun 2002

Low Concentration Microenvironments Enhance The Migration Of Neonatal Cells Of Glial Lineage, Richard A. Able, Jr., Celestin Ngnabeuye, Cade Beck, Eric C. Holland, Maribel Vazquez

Publications and Research

Glial tumors have demonstrated abilities to sustain growth via recruitment of glial progenitor cells (GPCs), which is believed to be driven by chemotactic cues. Previous studies have illustrated that mouse GPCs of different genetic backgrounds are able to replicate the dispersion pattern seen in the human disease. How GPCs with genetic backgrounds transformed by tumor paracrine signaling respond to extracellular cues via migration is largely unexplored, and remains a limiting factor in utilizing GPCs as therapeutic targets. In this study, we utilized a microfluidic device to examine the chemotaxis of three genetically-altered mouse GPC populations towards tumor conditioned media, as ...