Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Electro-Chemotactic Fields Induce Cooperative Movement Of Cns Cells, Shawn Mishra, Stephen Redenti, Maribel Vazquez Oct 2016

Electro-Chemotactic Fields Induce Cooperative Movement Of Cns Cells, Shawn Mishra, Stephen Redenti, Maribel Vazquez

Publications and Research

Vision loss in adults with Age Related Macular Degeneration (AMD) is attributed to damage of retinal photoreceptor cells that initiate vision by absorbing light. Mouse models have suggested that transplantation of precursor cells may be a novel approach to restore vision. This project uses a combination of electrotactic and chemotactic stimuli to promote and guide CNS cell migration within a microdevice model.


Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez Mar 2016

Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez

Publications and Research

BACKGROUND:

The developing visual system in Drosophila melanogaster provides an excellent model with which to examine the effects of changing microenvironments on neural cell migration via microfluidics, because the combined experimental system enables direct genetic manipulation, in vivo observation, and in vitro imaging of cells, post-embryo. Exogenous signaling from ligands such as fibroblast growth factor (FGF) is well-known to control glia differentiation, cell migration, and axonal wrapping central to vision.

NEW METHOD:

The current study employs a microfluidic device to examine how controlled concentration gradient fields of FGF are able to regulate the migration of vision-critical glia cells with and ...


Role Of Epidermal Growth Factor-Triggered Pi3k/Akt Signaling In The Migration Of Medulloblastoma-Derived Cells, Veronica Dudu, Richard A. Able, Jr., Veronica Rotari, Qingjun Kong, Maribel Vazquez Dec 2012

Role Of Epidermal Growth Factor-Triggered Pi3k/Akt Signaling In The Migration Of Medulloblastoma-Derived Cells, Veronica Dudu, Richard A. Able, Jr., Veronica Rotari, Qingjun Kong, Maribel Vazquez

Publications and Research

Medulloblastoma (MB) is the most common brain cancer diagnosed among children. The cellular pathways that regulate MB invasion in response to environmental cues remain incompletely understood. Herein, we examine the migratory response of human MB-derived Daoy cells to different concentration profiles of Epidermal Growth Factor (EGF) using a microfluidic system. Our findings provide the first quantitative evidence that EGF concentration gradients modulate the chemotaxis of MB-derived cells in a dose-dependent manner via the EGF receptor (EGF-R). Data illustrates that higher concentration gradients caused increased number of cells to migrate. In addition, our results show that EGF-induced receptor phosphorylation triggered the ...


Sendai Virus-Based Liposomes Enable Targeted Cytosolic Delivery Of Nanoparticles In Brain Tumor-Derived Cells, Veronica Dudu, Veronica Rotari, Maribel Vazquez Feb 2012

Sendai Virus-Based Liposomes Enable Targeted Cytosolic Delivery Of Nanoparticles In Brain Tumor-Derived Cells, Veronica Dudu, Veronica Rotari, Maribel Vazquez

Publications and Research

BACKGROUND: Nanotechnology-based bioassays that detect the presence and/or absence of a combination of cell markers are increasingly used to identify stem or progenitor cells, assess cell heterogeneity, and evaluate tumor malignancy and/or chemoresistance. Delivery methods that enable nanoparticles to rapidly detect emerging, intracellular markers within cell clusters of biopsies will greatly aid in tumor characterization, analysis of functional state and development of treatment regimens.

RESULTS: Experiments utilized the Sendai virus to achieve in vitro, cytosolic delivery of Quantum dots in cells cultured from Human brain tumors. Using fluorescence microscopy and Transmission Electron Microscopy, in vitro experiments illustrated that ...


Migration And Invasion Of Brain Tumors, Richard A. Able, Jr., Veronica Dudu, Maribel Vazquez Nov 2011

Migration And Invasion Of Brain Tumors, Richard A. Able, Jr., Veronica Dudu, Maribel Vazquez

Publications and Research

Recent advances in molecular biology have led to new insights in the development, growth and infiltrative behaviors of primary brain tumors (Demuth and Berens, 2004; Huse and Holland, 2010; Johnson et al., 2009; Kanu et al., 2009). These tumors are derived from various brain cell lineages and have been historically classified on the basis of morphological and, more recently, immunohistochemical features with less emphasis on their underlying molecular pathogenesis (Huse and Holland, 2010). The detailed molecular characterization of brain tumors has laid the groundwork for augmentation of standard treatment with patient-specific designed targeted therapies (Johnson et al., 2009; Kanu et ...


Low Concentration Microenvironments Enhance The Migration Of Neonatal Cells Of Glial Lineage, Richard A. Able, Jr., Celestin Ngnabeuye, Cade Beck, Eric C. Holland, Maribel Vazquez Jun 2002

Low Concentration Microenvironments Enhance The Migration Of Neonatal Cells Of Glial Lineage, Richard A. Able, Jr., Celestin Ngnabeuye, Cade Beck, Eric C. Holland, Maribel Vazquez

Publications and Research

Glial tumors have demonstrated abilities to sustain growth via recruitment of glial progenitor cells (GPCs), which is believed to be driven by chemotactic cues. Previous studies have illustrated that mouse GPCs of different genetic backgrounds are able to replicate the dispersion pattern seen in the human disease. How GPCs with genetic backgrounds transformed by tumor paracrine signaling respond to extracellular cues via migration is largely unexplored, and remains a limiting factor in utilizing GPCs as therapeutic targets. In this study, we utilized a microfluidic device to examine the chemotaxis of three genetically-altered mouse GPC populations towards tumor conditioned media, as ...