Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Biomedical Engineering and Bioengineering

Bme 20500 Bioelectrical Circuits, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bme 20500 Bioelectrical Circuits, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 9, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 9, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 10, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 10, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 7, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 7, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 1, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 1, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 3, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 3, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 4, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 4, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 5, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 5, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 6, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 6, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 2, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 2, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Translational Modeling Of Non-Invasive Electrical Stimulation, Dennis Quangvinh Truong Jan 2019

Translational Modeling Of Non-Invasive Electrical Stimulation, Dennis Quangvinh Truong

Dissertations and Theses

Seminal work in the early 2000’s demonstrated the effect of low amplitude non-invasive electrical stimulation in people using neurophysiological measures (motor evoked potentials, MEPs). Clinical applications of transcranial Direct Current Stimulation (tDCS) have since proliferated, though the mechanisms are not fully understood. Efforts to refine the technique to improve results are on-going as are mechanistic studies both in vivo and in vitro. Volume conduction models are being applied to these areas of research, especially in the design and analysis of clinical montages. However, additional research on the parameterization of models remains.

In this dissertation, Finite Element Method (FEM) models ...


A Novel Visual Stimulation Paradigm: Exploiting Individual Primary Visual Cortex Geometry To Boost Steady State Visual Evoked Potentials (Ssvep), Marta Isabel Vanegas Arroyave Jan 2013

A Novel Visual Stimulation Paradigm: Exploiting Individual Primary Visual Cortex Geometry To Boost Steady State Visual Evoked Potentials (Ssvep), Marta Isabel Vanegas Arroyave

Dissertations and Theses

The steady-state visual evoked potential (SSVEP) is an electroencephalographic response to flickering stimuli generated in significant part by activity in primary visual cortex (V1). SSVEP signal-to-noise ratio is generally low for stimuli that are located in the visual periphery, at frequencies higher than 20 Hz, or at low contrast. Because of the typical "cruciform" geometry of V1, large stimuli tend to excite neighboring cortical regions of opposite orientation, likely resulting in electric field cancellation. In Study 1, we explored ways to exploit V1 geometry in order to boost scalp SSVEP amplitude via oscillatory summation, by manipulating flicker-phase offsets among angular ...