Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Computational Bone Mechanics Modeling With Frequency Dependent Rheological Properties And Crosslinking, Timothy G. Moreno Mar 2021

Computational Bone Mechanics Modeling With Frequency Dependent Rheological Properties And Crosslinking, Timothy G. Moreno

Master's Theses

Bone is a largely bipartite viscoelastic composite. Its mechanical behavior is determined by strain rate and the relative proportions of its principal constituent elements, hydroxyapatite and collagen, but is also largely dictated by their geometry and topology. Collagen fibrils include many segments of tropocollagen in staggered, parallel sequences. The physical staggering of this tropocollagen allows for gaps known as hole-zones, which serve as nucleation points for apatite mineral. The distance between adjacent repeat units of tropocollagen is known as D-Spacing and can be measured by Atomic Force Microscopy (AFM). This D-Spacing can vary in length slightly within a bundle, but …


Optimal Parameter Values For Accurate And Repeatable Nanoindentation Of Human Trabecular Bone, Stephen Matthew Kmak Oct 2020

Optimal Parameter Values For Accurate And Repeatable Nanoindentation Of Human Trabecular Bone, Stephen Matthew Kmak

Master's Theses

Nanoindentation techniques have not been standardized for use on bone tissues, making comparison of bone material properties obtained via nanoindentation across studies difficult and unreliable. This study determined a set of optimal parameter values for thermal drift correction time, dwell time, and loading rate that can be used to obtain accurate and repeatable material properties from human femoral trabecular bone through experimentation and statistical analysis. All testing was conducted using a single nanoindenter on a single trabeculae, with the assumption that material properties within the individual trabeculae were internally consistent. Parameters not of interest during this study, such as ambient …


A Finite Element Analysis On The Viscoelasticity Of Postmenopausal Compact Bone Utilizing A Complex Collagen D-Spacing Model, Austin C. Cummings Jun 2015

A Finite Element Analysis On The Viscoelasticity Of Postmenopausal Compact Bone Utilizing A Complex Collagen D-Spacing Model, Austin C. Cummings

Master's Theses

The nanoscale dimension known as D-spacing describes the staggering of collagen molecules, which are fundamental to the biphasic makeup of bone tissue. This dimension was long assumed to be constant, but recent studies have shown that the periodicity of collagen is variable. Given that the arrangement of collagen molecules is closely related to the degree of bone mineralization, recent studies have begun to look at D-spacing as a potential factor in the ongoing effort to battle postmenopausal osteoporosis. The theoretical models presented by previous studies have only opted to model a single collagen-hydroxyapatite period, so the creation of an intricate …


The Effects Of Variation In Collagen D-Spacing On Compact Bone Viscoelasticity: A Finite Element Analysis, Miguel A. Mendoza Aug 2013

The Effects Of Variation In Collagen D-Spacing On Compact Bone Viscoelasticity: A Finite Element Analysis, Miguel A. Mendoza

Master's Theses

The D-spacing that is characteristic of collagen and its structural arrangement was previously thought to be a constant value. Much research is revealing that it is actually a distribution of values in biological tissues. Recent ovine experimentation has also shown that the D-spacing distribution is significantly altered following estrogen depletion. While ewes contain some major biological differences between their human counterparts, they are an economical and robust large animal model for postmenopausal osteoporosis. So, the exploration of the possible implications that D-spacing has on the mechanical properties of the whole bone utilizing animal models and computational methods is warranted. Six …


Modeling The Zimmer Fitmore And Ml Taper Implantation, Tyler Kazuo Franklin May 2013

Modeling The Zimmer Fitmore And Ml Taper Implantation, Tyler Kazuo Franklin

Master's Theses

With more young adults requiring total hip

arthroplasties the need for bone saving implants becomes

more important. The Zimmer Fitmore is a new bone saving

implant that utilizes an implantation technique that

reduces the damage to the muscle tissue allowing for

patients to have a short recovery time as well as a new

design that allows it to rest on the medial cortex. There

has been anecdotal evidence that this device leads to early

revision within six months of implantation due to failures

occurring in the medial cortex. The main goal of this

study was to computationally model the Zimmer …


Esem Analysis Of Mice Femurs With Varying Sost Levels, Patrick K. Mcclay Jun 2012

Esem Analysis Of Mice Femurs With Varying Sost Levels, Patrick K. Mcclay

Biomedical Engineering

This project’s goal was to analyze the properties of the cortical femur on 100 mice bones from Lawrence Livermore National Laboratory. Analysis was limited to imaging which determined the ratio of bone volume to total volume (BV/TV) and osteocyte lacunae density. Mice were altered to knock out their SOST gene: a negative regulator of bone formation. Twelve groups were created to differentiate their treatment, duration, and phenotype. Transgenic (TG) mice had an overexpression of the SOST gene: they carried a bacterial artificial chromosome. Mice with limb defects (DEF) were the offspring of two TG mice and carried twice the amount …


The Development And Validation Of A Finite Element Model Of A Canine Rib For Use With A Bone Remodeling Algorithm., Scott J. Sylliaasen Dec 2010

The Development And Validation Of A Finite Element Model Of A Canine Rib For Use With A Bone Remodeling Algorithm., Scott J. Sylliaasen

Master's Theses

Studies are currently being performed to determine the effects of bisphosphonate treatments on the structure and density of bone tissue. One of the pathways for gaining a better understanding of the effects of this and other treatments involves creating a computer simulation. Theory suggests that bone tissue structure and density are directly related to the manner in which the tissue is loaded. Remodeling is the process in which bone tissue is resorbed in areas of low stress distributions, and generated in areas of high stress distributions. Previous studies have utilized numerical methods and finite element methods to predict bone structure …


A Computational Model Of Apoptotic Osteocyte Correlation To Cortical Bone Remodeling Parameters, Michael Stephen Alexander Dec 2009

A Computational Model Of Apoptotic Osteocyte Correlation To Cortical Bone Remodeling Parameters, Michael Stephen Alexander

Master's Theses

The onset of osteoporosis caused by aging, disease states, and post-menopausal conditions significantly impacts patient quality of life, required healthcare funding, personal autonomy losses from increased fracture risk and the subsequent corrective surgery. Research has indicated that osteocyte apoptosis may be a key parameter in bone remodeling, raising the possibility of remodeling rate modulation for the mitigation of bone mass resorption. By developing therapies that target osteocyte apoptosis, it may be possible to prevent undesired bone remodeling activity while maintaining a healthy balance between damage formation in the form of microcracks induced by the strain environment and the removal of …