Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Development And Implementation Of Assessment Methods For Tissue-Engineered Blood Vessel Mimics, Tanner Stevenson Jun 2014

Development And Implementation Of Assessment Methods For Tissue-Engineered Blood Vessel Mimics, Tanner Stevenson

Biomedical Engineering

Coronary Artery Disease (CAD), the most prevalent form of heart disease, is the result of clogged or damaged coronary arteries and claims around 380,000 Americans annually. A common treatment for CAD involves placing a stent into the artery in order to open the lumen and support the native tissue—a procedure that drastically reduces patient recovery times in comparison to heart bypass surgery. However, stents do not always interact well with the body and require additions such as surface coatings or drug elution in order for additional biocompatibility. These additions necessitate extensive in vitro and in vivo testing which are expensive …


Investigating The Reproducibility Of The Current Bvm Protocol, Corey Gross Mar 2013

Investigating The Reproducibility Of The Current Bvm Protocol, Corey Gross

Biomedical Engineering

Coronary Artery Disease (CAD) is responsible for 1 death every minute in the US. Angioplasty with the implantation of stents is a common treatment method for CAD. Although there is a variety of stents currently on the market, there is still a need to develop new types for different pathologic conditions. Preliminary assessment of the physiological response to new stents is needed as they are being developed. The FDA approval process implemented today is a long, tedious path with a range of testing methods that include static in vitro testing and high-cost animal testing. Tissue engineered blood vessels have been …


Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing, Navid Djassemi Jul 2012

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing, Navid Djassemi

Master's Theses

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing

Navid Djassemi

Tissue engineering blood vessel mimics has been proposed as a method to analyze the endothelial cell response to intravascular devices that are used in today’s clinical settings for the treatment of cardiovascular disease. Thus, the development of in vitro blood vessel mimics (BVMs) in Cal Poly’s Tissue Engineering Lab has introduced the possibility of assessing the characteristics of cellular response to past, present, and future intravascular devices that aim at treating coronary artery disease.

This thesis aimed at improving the methods and procedures utilized in …


Assessment Of Electrospinning As An In-House Fabrication Technique For Blood Vessel Mimic Cellular Scaffolding, Colby M. James Sep 2009

Assessment Of Electrospinning As An In-House Fabrication Technique For Blood Vessel Mimic Cellular Scaffolding, Colby M. James

Master's Theses

Intravascular devices, such as stents, must be rigorously tested before they can be approved by the FDA. This includes bench top in vitro testing to determine biocompatibility, and animal model testing to ensure safety and efficacy. As an intermediate step, a blood vessel mimic (BVM) testing method has been developed that mimics the three dimensional structure of blood vessels using a perfusion bioreactor system, human derived endothelial cells, and a biocompatible polymer scaffold used to support growth of the blood vessel cells. The focus of this thesis was to find an in-house fabrication method capable of making cellular scaffolding for …