Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Biomechanics and Biotransport

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 567

Full-Text Articles in Biomedical Engineering and Bioengineering

Tracking Simulated Somatosensory Deficiencies That Affect Postural Stability Through Detrended Fluctuation Analysis, Cameron L. Steele Mar 2024

Tracking Simulated Somatosensory Deficiencies That Affect Postural Stability Through Detrended Fluctuation Analysis, Cameron L. Steele

ELAIA

Falls are a prevalent problem among elderly populations. Falls increase the cost of healthcare, frequently cause severe injuries, and negatively affect quality of life. Lack of postural stability is a major contributing factor to falls, with postural stability defined as the correct biomechanical execution based on sensory feedback. Types of sensory feedback include vision, vestibular, proprioceptive, and somatosensory. This study focuses on the lack of postural stability in quiet standing (standing upright and still) due to somatosensory and vision deficiencies. To track these deficiencies, fifty-one subjects stood for sixty seconds on two force plates, and their center of pressure (COP) …


The Development And Testing Of A Gyroscope-Based Neck Strengthening Rehabilitation Device, Nicole D. Devos Feb 2024

The Development And Testing Of A Gyroscope-Based Neck Strengthening Rehabilitation Device, Nicole D. Devos

Electronic Thesis and Dissertation Repository

Neck pain can be debilitating, and is experienced by the majority of people at some point over the course of their life. Resistance training has been shown to have significant improvement in pain or disability for patients. There are few options available for telerehabilitation, and the use of gyroscope stabilizers is proposed for this use. A biomechanics model of a head--neck--gyroscope system was created. In order to also model the dynamics of such a system, this work proposes a blended method using the Denavit--Hartenberg (DH) convention, popular in the field of robotics, with the Lagrangian mechanics approach to analyze an …


Mathematical Model Of Oxygen, Nutrient, And Drug Transport In Tuberculosis Granulomas, Meenal Datta, Mccarthy Kennedy, Saeed Siri, Laura Via, James W. Baish, Lei Xu, Veronique Dartois, Clifton Barry, Rakesh Jain Feb 2024

Mathematical Model Of Oxygen, Nutrient, And Drug Transport In Tuberculosis Granulomas, Meenal Datta, Mccarthy Kennedy, Saeed Siri, Laura Via, James W. Baish, Lei Xu, Veronique Dartois, Clifton Barry, Rakesh Jain

Faculty Journal Articles

Physiological abnormalities in pulmonary granulomas–pathological hallmarks of tuberculosis (TB)–compromise the transport of oxygen, nutrients, and drugs. In prior studies, we demonstrated mathematically and experimentally that hypoxia and necrosis emerge in the granuloma microenvironment (GME) as a direct result of limited oxygen availability. Building on our initial model of avascular oxygen diffusion, here we explore additional aspects of oxy- gen transport, including the roles of granuloma vasculature, transcapillary transport, plasma dilution, and interstitial convection, followed by cellular metabolism. Approximate analytical solutions are provided for oxygen and glucose concentration, interstitial fluid velocity, interstitial fluid pressure, and the thickness of the convective zone. …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Getting Off On The Right Foot: Addressing Severe Lymphedema Through A Novel Shoe Design, Carl R. Russell Iii, Anjollie M. Ramakrishna, Christopher H. Johns Iii, Alana V. Van Wijnen Dec 2023

Getting Off On The Right Foot: Addressing Severe Lymphedema Through A Novel Shoe Design, Carl R. Russell Iii, Anjollie M. Ramakrishna, Christopher H. Johns Iii, Alana V. Van Wijnen

Purdue Journal of Service-Learning and International Engagement

Engineering Projects in Community Service (EPICS) is a service-learning design program run by the College of Engineering at Purdue University. EPICS teaches students design skills by providing solutions for individuals, communities, and organizations in the surrounding area while mirroring engineering industry standards. Biomedical Engineering is a team within EPICS that strives to serve community partners through biomedical applications. HR is a patient who suffers from severe lymphedema. This condition results in her foot swelling three times its original size and requires her to utilize weekly leg compression therapy. Prescription shoes are slightly adequate. However, they lead to sores and pain …


Numerical Investigation Of Subglottal Stenosis Effects On Human Voice Production, Dariush Bodaghi Dec 2023

Numerical Investigation Of Subglottal Stenosis Effects On Human Voice Production, Dariush Bodaghi

Electronic Theses and Dissertations

This dissertation aimed to advance knowledge of how subglottal stenosis impacts voice production physiology. An in-house fluid-structure-acoustic interaction approach based on the hydrodynamic/acoustic splitting technique was employed. This technique was rigorously verified for simulating phonation by matching the acoustic behavior to a compressible flow solver for phonation-relevant geometries. Simulations of an idealized 2D vocal tract model demonstrated the effects of supraglottal acoustic resonance on vocal fold kinematics and glottal flow waveform. Results showed that the acoustic coupling between higher harmonics and formats generated pressure oscillations, modifying vocal fold dynamics and glottal flow rate.

A major novelty was the incorporation and …


Quantification Of Intervertebral Disc Strain From High-Resolution Ultrasound Imaging During Dynamic Loading, Diya Sakhrani Dec 2023

Quantification Of Intervertebral Disc Strain From High-Resolution Ultrasound Imaging During Dynamic Loading, Diya Sakhrani

Discovery Undergraduate Interdisciplinary Research Internship

High-resolution ultrasound imaging employs high-frequency sound waves that can be used to noninvasively visualize the structures within the body, facilitating medical diagnosis without the need for open surgery. The widespread utilization of ultrasound is attributed to its affordability, non-invasive characteristics, and use of non-ionizing radiation. Nevertheless, ultrasound is prone to artifacts originating from the surrounding environment, gas-liquid interfaces, or dense tissue. These artifacts are common in ultrasound images and can cause dropout, noise, and degraded resolution. In this study we analyzed intervertebral disc (IVD) strain during two axial compression testing cycles of bovine intervertebral discs with a 2-dimensional direct deformation …


Characterizing Intervertebral Disc Strain Under Dynamic Loading Conditions Using Ultrasound Texture Analysis, Radhika Kulkarni Nov 2023

Characterizing Intervertebral Disc Strain Under Dynamic Loading Conditions Using Ultrasound Texture Analysis, Radhika Kulkarni

Discovery Undergraduate Interdisciplinary Research Internship

Herniated discs in the spine are a significant patient burden, with potential links to lower back and leg discomfort and a considerable impact on daily life. These discs, located between spinal vertebrae, are comprised of the annulus fibrosus (AF) and the nucleus pulposus (NP). Herniations happen when the NP protrudes through a full-thickness annular tear, possibly compressing spinal nerves. The mechanical factors underlying herniated discs are poorly understood, necessitating research into these mechanisms and accessible diagnostic techniques. Our study employs high-resolution ultrasound and texture correlation to quantify strain patterns in intervertebral discs during dynamic loading.

A motion segment from the …


Transport Barriers Influence The Activation Of Anti-Tumor Immunity: A Systems Biology Analysis, Mohammad R. Nikmaneshi, James W. Baish, Hengbo Zhou, Lance L. Munn Nov 2023

Transport Barriers Influence The Activation Of Anti-Tumor Immunity: A Systems Biology Analysis, Mohammad R. Nikmaneshi, James W. Baish, Hengbo Zhou, Lance L. Munn

Faculty Journal Articles

Effective anti-cancer immune responses require activation of one or more naïve T cells. If the correct naïve T cell encounters its cognate antigen presented by an antigen presenting cell, then the T cell can activate and proliferate. Here, mathematical modeling is used to explore the possibility that immune activation in lymph nodes is a rate-limiting step in anti-cancer immunity and can affect response rates to immune checkpoint therapy. The model provides a mechanistic framework for optimizing cancer immunotherapy and developing testable solutions to unleash anti-tumor immune responses for more patients with cancer. The results show that antigen production rate and …


Computational Modeling Using A Novel Continuum Approach Coupled With Pathway-Informed Neural Networks To Optimize Dynein-Mediated Centrosome Positioning In Polarized Cells, Arkaprovo Ghosal, Padmanabhan Seshaiyar Dr., Adriana Dawes Dr., General Genomics Inc. Nov 2023

Computational Modeling Using A Novel Continuum Approach Coupled With Pathway-Informed Neural Networks To Optimize Dynein-Mediated Centrosome Positioning In Polarized Cells, Arkaprovo Ghosal, Padmanabhan Seshaiyar Dr., Adriana Dawes Dr., General Genomics Inc.

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Kinematic Analysis Of Gait And Deep Knee Flexion For Pre- And Post-Operative Total Knee Arthroplasty, Samantha Collins Nov 2023

Kinematic Analysis Of Gait And Deep Knee Flexion For Pre- And Post-Operative Total Knee Arthroplasty, Samantha Collins

Electronic Theses and Dissertations

Osteoarthritis (OA) is a form of arthritis that develops in the joint due to overuse and aging causing pain, discomfort, and disability. Total Knee Arthroplasty (TKA) is a surgical procedure performed when OA symptoms are severe with an estimated 600,000 patients in the United States currently receiving TKA. Studies have reported dissatisfaction of the knee for 14-39% of patients. This study collected knee kinematics before and after surgery using stereo radiography for precise measurement of gait and deep knee flexion activities. Results showed healthy knee kinematics were not restored and no significant changes could be seen from OA kinematics in …


Computational Methodology For Generating Patient-Specific Soft Tissue Representations, Ahilan Anantha Krishnan Nov 2023

Computational Methodology For Generating Patient-Specific Soft Tissue Representations, Ahilan Anantha Krishnan

Electronic Theses and Dissertations

This dissertation focused on modeling specimen-specific soft tissue structures in the context of joint replacement surgery. The research addressed four key aspects. The first study involved developing a workflow for creating finite element models of the hip capsule to replicate its torque-rotational response. Experimental data from ten cadaveric hips were used to calibrate the models, resulting in improved accuracy and relevance for surgical planning and implant design. The second study tackled the challenge of expediting the calibration of mechanical properties of the hip capsule to match patient-specific laxities. A statistical shape function model was proposed to generate patient-specific finite element …


Digital Twins Of The Living Knee: From Measurements To Model, Thor Erik Andreassen Nov 2023

Digital Twins Of The Living Knee: From Measurements To Model, Thor Erik Andreassen

Electronic Theses and Dissertations

Modern medicine has dramatically improved the lives of many. In orthopaedics, robotic surgery has given clinicians superior accuracy when performing interventions over conventional methods. Nevertheless, while these and many other methods are available to ensure treatments are performed successfully, far fewer methods exist to predict the proper treatment option for a given person. Clinicians are forced to categorize individuals, choosing the best treatment on “average.” However, many individuals differ significantly from the “average” person, for which many of these treatments are designed. Going forward, a method of testing, evaluating, and predicting different treatment options' short- and long-term effects on an …


Bacterial Motion And Spread In Porous Environments, Yasser Almoteri Aug 2023

Bacterial Motion And Spread In Porous Environments, Yasser Almoteri

Dissertations

Micro-swimmers are ubiquitous in nature from soil and water to mammalian bodies and even many technological processes. Common known examples are microbes such as bacteria, micro-algae and micro-plankton, cells such as spermatozoa and organisms such as nematodes. These swimmers live and have evolved in multiplex environments and complex flows in the presence of other swimmers and types, inert particles and fibers, interfaces and non-trivial confinements and more. Understanding the locomotion and interactions of these individual micro-swimmers in such impure viscous fluids is crucial to understanding the emergent dynamics of such complex systems, and to further enabling us to control and …


Designing And Modeling A Fail-Safe Mechanism To Be Used In Attachment Of A Transcutaneous Femoral Implant To A Prosthetic Device, Emma Sperry Aug 2023

Designing And Modeling A Fail-Safe Mechanism To Be Used In Attachment Of A Transcutaneous Femoral Implant To A Prosthetic Device, Emma Sperry

Electronic Theses and Dissertations

Amputations are quite common and even modern prosthetic devices are plagued by problems. There are approximately 2 million people living with limb loss in the U.S. and on average 185,000 amputations occur yearly. Common attachment mechanisms for external prosthetic components to a residual limb, that is, sockets, pose numerous challenges. Issues include skin irritation, discomfort, socket fit issues, and immobility. Issues include skin irritation, discomfort, socket fit issues, and immobility. Transcutaneous implants have great potential as a connection method for external prosthetic components to a residual limb but because the implants are typically solid, they correlate to extremely high infection …


Understanding The Mechanisms By Which Cable Sway Produces Motion Artifact In Mobile Electroencephalography, David Rojas Aug 2023

Understanding The Mechanisms By Which Cable Sway Produces Motion Artifact In Mobile Electroencephalography, David Rojas

Electronic Theses and Dissertations, 2020-

Mobile brain/body imaging utilizes electroencephalography (EEG) to record brain activity during human walking in dynamic environments. Motion artifact from cable sway affects the quality of EEG signals collected from the scalp, masking contributions of synchronously firing neurons. Previous studies have explored cable sway-induced motion artifact, but only during vigorous exercise or controlled sinusoidal motion. Therefore, a need remains to further understand the underlying mechanisms of this artifact, as it may help with developing real-time mitigation methods, reducing reliance on offline signal processing. In this thesis, I aimed to show that controlled cable sway could produce specific motion artifact waveforms in …


An Automated, Deep Learning Approach To Systematically & Sequentially Derive Three-Dimensional Knee Kinematics Directly From Two-Dimensional Fluoroscopic Video, Viet Dung Nguyen Aug 2023

An Automated, Deep Learning Approach To Systematically & Sequentially Derive Three-Dimensional Knee Kinematics Directly From Two-Dimensional Fluoroscopic Video, Viet Dung Nguyen

Doctoral Dissertations

Total knee arthroplasty (TKA), also known as total knee replacement, is a surgical procedure to replace damaged parts of the knee joint with artificial components. It aims to relieve pain and improve knee function. TKA can improve knee kinematics and reduce pain, but it may also cause altered joint mechanics and complications. Proper patient selection, implant design, and surgical technique are important for successful outcomes. Kinematics analysis plays a vital role in TKA by evaluating knee joint movement and mechanics. It helps assess surgery success, guides implant and technique selection, informs implant design improvements, detects problems early, and improves patient …


Development And Application Of A Microfluidic Platform For Quantifying Intra-Tumoral Compressive Stress., Zachary P. Fowler Aug 2023

Development And Application Of A Microfluidic Platform For Quantifying Intra-Tumoral Compressive Stress., Zachary P. Fowler

Electronic Theses and Dissertations

Cancer progression is linked to the emergence of aberrant mechanical signaling in the tumor microenvironment. Modulation of extrinsic signals, such as ECM stiffness and composition, have been thoroughly explored. However, the development of solid stresses within the tumor remains poorly understood. To address this, we have developed a microfluidic platform that generates deformable alginate microbeads that allow for the quantification of compressive stresses generated within a growing glioblastoma (GBM) tumorsphere. PDMS microfluidic devices were fabricated via SU-8 mold with channels ranging from 10µm-40µm in diameter. Fluorescently labeled sodium alginate underwent a cross-linking reaction within the device to generate monodisperse beads …


Assessment Of Knee Flexion In Young Children With Prosthetic Knee Components Using Dynamic Time Warping, Mark Daniel Geil, Zahra Safaeepour Aug 2023

Assessment Of Knee Flexion In Young Children With Prosthetic Knee Components Using Dynamic Time Warping, Mark Daniel Geil, Zahra Safaeepour

Faculty and Research Publications

Introduction: Analysis of human locomotion is challenged by limitations in traditional numerical and statistical methods as applied to continuous timeseries data. This challenge particularly affects understanding of how close limb prostheses are to mimicking anatomical motion. This study was the first to apply a technique called Dynamic Time Warping to measure the biomimesis of prosthetic knee motion in young children and addressed the following research questions: Is a combined dynamic time warping/root mean square analysis feasible for analyzing pediatric lower limb kinematics? When provided at an earlier age than traditional protocols dictate, can children with limb loss utilize an articulating …


Finite Element Modeling Of Patient-Specific Total Shoulder Arthroplasty, Ignacio Rivero Crespo Aug 2023

Finite Element Modeling Of Patient-Specific Total Shoulder Arthroplasty, Ignacio Rivero Crespo

Electronic Theses and Dissertations

Total Shoulder Arthroplasty (TSA) is a surgical procedure designed to improve joint functionality by replacing the articulation between the humeral head and the glenoid fossa. Anatomic Total Shoulder Arthroplasty (aTSA) and Reverse Total Shoulder Arthroplasty (rTSA) are two types of replacement surgery to relieve pain and restore function of the shoulder. The overall goal of this study was to evaluate the effects of variation of certain patient and implant alignment parameters that may influence long-term outcomes of these surgical procedures, including kinematics, joint loads and contact mechanics. Computational models of six TSA subjects, three aTSA and three rTSA, were created …


Subject-Specific Human Knee Fea Models For Transtibial Amputees Vs Control Tibial Cartilage Pressure In Gait, Cycling And Elliptical Training, Ali Yazdkhasti Aug 2023

Subject-Specific Human Knee Fea Models For Transtibial Amputees Vs Control Tibial Cartilage Pressure In Gait, Cycling And Elliptical Training, Ali Yazdkhasti

Master's Theses

Millions of individuals around the globe are impacted by osteoarthritis, which is the prevailing type of arthritis. This condition arises as a result of gradual deterioration of the protective cartilage that safeguards the ends of the bones. This is especially true of transtibial amputees, who have a significantly higher incidence of osteoarthritis of the knee in their intact limb than non-amputees. Engaging in regular physical activity, managing weight effectively, and undergoing specific treatments can potentially slow down the advancement of the disease and enhance pain relief and joint function. Nevertheless, the relationship between the type of exercise and its impact …


A Dynamical Systems Approach To Characterizing Brain–Body Interactions During Movement: Challenges, Interpretations, And Recommendations, Derek C. Monroe, Nathaniel T. Berry, Peter C. Fino, Christopher K. Rhea Jul 2023

A Dynamical Systems Approach To Characterizing Brain–Body Interactions During Movement: Challenges, Interpretations, And Recommendations, Derek C. Monroe, Nathaniel T. Berry, Peter C. Fino, Christopher K. Rhea

Rehabilitation Sciences Faculty Publications

Brain–body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of ‘brain’ activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a …


Bespoke Bicycle Enclosure, Thomas Link, Kyle Mcafee, Marc Monier, Hunter Walden Jun 2023

Bespoke Bicycle Enclosure, Thomas Link, Kyle Mcafee, Marc Monier, Hunter Walden

Mechanical Engineering

Brian Higgins is an American veteran with retinitis pigmentosa who relies on cycling for transportation. The motivation for this project is to design and manufacture a refined prototype bicycle attachment to support him while biking in the rain and cold. The attachment will serve to enclose him for optimal protection from inclement weather, while maintaining sufficient mobility for daily cycling. Mr. Higgins’ bicycle is equipped with an attached sensor system which assists his visual impairment by using an ultrasonic sensor. Therefore, the attachment cannot adversely affect the function of the sensor system. The project timeline is set at approximately 7 …


Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani Jun 2023

Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani

Electronic Theses and Dissertations

Osteoarthritis (OA) is the leading cause of disability among the aging population in the United States and is frequently treated by replacing deteriorated joints with metal and plastic components. Developing better quantitative measures of movement quality to track patients longitudinally in their own homes would enable personalized treatment plans and hasten the advancement of promising new interventions. Wearable sensors and machine learning used to quantify patient movement could revolutionize the diagnosis and treatment of movement disorders. The purpose of this dissertation was to overcome technical challenges associated with the use of wearable sensors, specifically Inertial Measurement Units (IMUs), as a …


Novel Microfluidic Devices To Model The Interactions Between Lymphatics And Breast Cancer, Jade Weber May 2023

Novel Microfluidic Devices To Model The Interactions Between Lymphatics And Breast Cancer, Jade Weber

McKelvey School of Engineering Theses & Dissertations

The lymphatic system is responsible for immune circulation and fluid balance in the body. It accomplishes this by draining interstitial fluid from local tissue and transferring it to lymph nodes and back into blood circulation. However, this process is implicated in many pathologies, one of the most dangerous being breast cancer metastasis to the lymph nodes. The largest factor in breast cancer patient mortality is metastasis. Lymphangiogenesis, the growth of new lymphatic vessels, has been thought to play a dynamic role in aiding breast cancer metastasis. Breast cancer tumor cells have been shown to remodel the functionality of local lymph …


Methodology For Formalin Fixed Paraffin Embedded Cardiac Tissue Analysis, Leah G. Gutzwiller, Colleen Crouch May 2023

Methodology For Formalin Fixed Paraffin Embedded Cardiac Tissue Analysis, Leah G. Gutzwiller, Colleen Crouch

Haslam Scholars Projects

No abstract provided.


Dpd Guided Insight On The Formation Process Of Polyethersulfone Membranes By Nonsolvent Induced Phase Separation And The Effects Of Additives, Eric Ledieu May 2023

Dpd Guided Insight On The Formation Process Of Polyethersulfone Membranes By Nonsolvent Induced Phase Separation And The Effects Of Additives, Eric Ledieu

Graduate Theses and Dissertations

Dissipative particle dynamics (DPD), a coarse grain simulation method, was applied to the membrane formation process of non-solvent induced phase separation (NIPS) to gain further insight on the mechanism of certain variables and how they affect the final morphology. NIPS involves two solutions, an organic polymer dissolved in an organic solvent colloquially called the dope and an aqueous coagulation bath, brought into contact with one another. The solvents then mix, causing the polymer to fall out of solution as an asymmetric membrane with a dense surface layer and a more open subsurface layer in response to the decreasing solubility. Polyethersulfone …


Polymeric Biomaterials Approaches For Engineering The In Vitro Cellular Microenvironment For Mscs, Mahsa Letter-Mahsa Haseli May 2023

Polymeric Biomaterials Approaches For Engineering The In Vitro Cellular Microenvironment For Mscs, Mahsa Letter-Mahsa Haseli

Graduate Theses and Dissertations

Cell therapy is a technology that relies on replacing diseased or dysfunctional cells with healthy functioning ones. One of the cells used for such advanced therapies are stem cells, owing to their ability to differentiate into specific cells required for repairing damaged or defective tissues or cells. The majority of cell-based products are intended to transiently persist in the patient, secreting factors which then allow the patient’s body to heal; in these products, the cells are subsequently eliminated from the body. Furthermore, unique manufacturing platforms, in addition to novel commercialization strategies, will be required to create a successful, sustainable cell …


Effect Of Human Decellularized Skeletal Muscle On Recovery From Volumetric Muscle Loss Injury, Jacob Schluns May 2023

Effect Of Human Decellularized Skeletal Muscle On Recovery From Volumetric Muscle Loss Injury, Jacob Schluns

Graduate Theses and Dissertations

Volumetric muscle loss (VML) overwhelms muscle’s robust capacity for regeneration. A key event in the etiology of VML injury is the bulk loss of structural cues provided by the underlying extracellular matrix (ECM). While muscle is a highly structured tissue, with cell and ECM alignment in the direction of contractile force production, the impact of scaffold alignment on recovery remains unclear. Bulk human decellularized skeletal muscle (DSM) tissues were sectioned into 10 x 1-2 mm fibers. VML defects were repaired using multi-fiber implants consisting of approximately 8 fibers per defect arranged into two layers. Fibers were oriented 1) to the …


Blood Flow Regulates Atherosclerosis Progression And Regression, Morgan A. Schake May 2023

Blood Flow Regulates Atherosclerosis Progression And Regression, Morgan A. Schake

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Atherosclerosis is the most prevalent pathology of cardiovascular disease with no known cure. Despite the many systemic risk factors for atherosclerosis, plaques do not form randomly in the vasculature. Instead, they form around bifurcations and the inner curvature of highly curving arterial segments that contain so-called disturbed blood flow that is low in magnitude and multidirectional over the cardiac cycle. Conversely, straight, non-bifurcated arterial segments that contain moderate-to-high and unidirectional (i.e., normal) blood flow are protected from plaque development. Thus, blood flow is a key regulator of atherosclerosis that may be able to be leveraged to develop new therapeutics. Towards …