Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Killing Adherent And Nonadherent Cancer Cells With The Plasma Pencil, Mounir Laroussi, Soheila Mohades, Nazir Barekzi Jan 2015

Killing Adherent And Nonadherent Cancer Cells With The Plasma Pencil, Mounir Laroussi, Soheila Mohades, Nazir Barekzi

Electrical & Computer Engineering Faculty Publications

The application of low temperature plasmas in biology and medicine may lead to a paradigm shift in the way various diseases can be treated without serious side effects. Low temperature plasmas generated in gas mixtures that contain oxygen or air produce several chemically reactive species that have important biological implications when they interact with eukaryotic or prokaryotic cells. Here, a review of the effects of low temperature plasma generated by the plasma pencil on different cancerous cells is presented. Results indicate that plasma consistently shows a delayed killing effect that is dose dependent. In addition, there is some evidence that ...


Mechanical And Chemical Effects In Adhesion Of Thin Shell Structures With Applications In Wafer Bonding And Adhesion Of Living Cells, Richard M. Springman Aug 2009

Mechanical And Chemical Effects In Adhesion Of Thin Shell Structures With Applications In Wafer Bonding And Adhesion Of Living Cells, Richard M. Springman

Publicly Accessible Penn Dissertations

A theoretical model is analyzed to investigate the adhesion of thin shell structures to both rigid and deformable substrates under a variety of surface conditions. The thermodynamic forces driving the adhesive process are determined from an interfacial free energy, which is described within a classical thermodynamics framework. Deformations of the thin, elastic shells are studied using a geometrically nonlinear shell theory. Finite-range adhesive tractions, chemical segregation, substrate compliance, and substrate topography all are considered over a wide range of geometric and material parameters. Equilibrium adhesion states are characterized by a shell flatness parameter, the contact radius, and the adhesive and ...


Phase Imaging: Deep Or Superficial?, Nancy Burnham, O Behrend, L Odoni, J Loubet Oct 1999

Phase Imaging: Deep Or Superficial?, Nancy Burnham, O Behrend, L Odoni, J Loubet

Nancy A. Burnham

Phase images acquired while intermittently contacting a sample surface with the tip of an atomic force microscope cantilever are not easy to relate to material properties. We have simulated dynamic force curves and compared simulated with experimental results. For some cantilever–sample combinations, the interaction remains a surface effect, whereas for others, the tip penetrates the sample significantly. Height artifacts in the “topography” images, and the role of the sample stiffness, work of adhesion, damping, and topography in the cantilever response manifest themselves to different extents depending on the indentation depth.


Stiffness Of Measurement System And Significant Figures Of Displacement Which Are Required To Interpret Adhesional Force Curves, Nancy Burnham, Kunio Takahashi, Hubert Pollock, Tadao Onzawa Feb 1997

Stiffness Of Measurement System And Significant Figures Of Displacement Which Are Required To Interpret Adhesional Force Curves, Nancy Burnham, Kunio Takahashi, Hubert Pollock, Tadao Onzawa

Nancy A. Burnham

Force curves obtained from an elastic contact theory are shown and compared with experimental results. In the elastic contact theory, a pin-on-disk contact is assumed and the following interaction are taken into consideration; (i) elastic deformation, (ii) the specific energy of adhesion in the area of the contact, which is expressed as the difference between the surface energies and the interface energy, (iii) the long-range interaction outside the area of contact, assuming the additivity of the Lennard-Jones type potential, and (iv) another elastic term for the measurement system such as the cantilever stiffness of an atomic force microscope (AFM). In ...