Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

In Vivo Vascular Imaging With Photoacoustic Microscopy, Hsun-Chia Hsu Aug 2018

In Vivo Vascular Imaging With Photoacoustic Microscopy, Hsun-Chia Hsu

Engineering and Applied Science Theses & Dissertations

Photoacoustic (PA) tomography (PAT) has received extensive attention in the last decade for its capability to provide label-free structural and functional imaging in biological tissue with highly scalable spatial resolution and penetration depth. Compared to modern optical modalities, PAT offers speckle-free images and is more sensitive to optical absorption contrast (with 100% relative sensitivity). By implementing different regimes of optical wavelength, PAT can be used to image diverse light-absorbing biomolecules. For example, hemoglobin is of particular interest in the visible wavelength regime owing to its dominant absorption, and lipids and water are more commonly studied in the near-infrared regime.

In ...


Developing Photoacoustic Tomography Devices For Translational Medicine And Basic Science Research, Tsz Wai Wong May 2018

Developing Photoacoustic Tomography Devices For Translational Medicine And Basic Science Research, Tsz Wai Wong

Engineering and Applied Science Theses & Dissertations

Photoacoustic (PA) tomography (PAT) provides volumetric images of biological tissue with scalable spatial resolutions and imaging depths, while preserving the same imaging contrast—optical absorption. Taking the advantage of its 100% sensitivity to optical absorption, PAT has been widely applied in structural, functional, and molecular imaging, with both endogenous and exogenous contrasts, at superior depths than pure optical methods. Intuitively, hemoglobin has been the most commonly studied biomolecule in PAT due to its strong absorption in the visible wavelength regime.

One of the main focuses of this dissertation is to investigate an underexplored wavelength regime—ultraviolet (UV), which allows us ...


Developing Wavefront Shaping Techniques For Focusing Through Highly Dynamic Scattering Media, Ashton Hemphill May 2018

Developing Wavefront Shaping Techniques For Focusing Through Highly Dynamic Scattering Media, Ashton Hemphill

Engineering and Applied Science Theses & Dissertations

One of the prime limiting factors of optical imaging in biological applications is the diffusion of light by tissue, which prevents focusing at depths greater than the optical diffusion limit of ~1 mm in soft tissue. This greatly restricts the utility of optical diagnostic and therapeutic techniques, such as optogenetics, microsurgery, optical tweezing, and phototherapy of deep tissue, which require focused light in order to function. Wavefront shaping extends the depth at which optical focusing may be achieved by compensating for phase distortions induced by scattering, allowing for focusing through constructive interference.

However, due to physiological motion, scattering of light ...


Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller May 2018

Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller

Engineering and Applied Science Theses & Dissertations

Optical imaging for medical applications is a growing field, and it has the potential to improve medical outcomes through its increased sensitivity and specificity, lower cost, and small instrumentation footprint as compared to other imaging modalities. The method holds great promise, ranging from direct clinical use as a diagnostic or therapeutic tool, to pre-clinical applications for increased understanding of pathology. Additionally, optical imaging uses non-ionizing radiation which is safe for patients, so it can be used for repeated imaging procedures to monitor therapy, guide treatment, and provide real-time feedback. The versatile features of fluorescence-based optical imaging make it suited for ...


System Characterizations And Optimized Reconstruction Methods For Novel X-Ray Imaging, Huifeng Guan Dec 2017

System Characterizations And Optimized Reconstruction Methods For Novel X-Ray Imaging, Huifeng Guan

Engineering and Applied Science Theses & Dissertations

In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique ...


System Optimization And Iterative Image Reconstruction In Photoacoustic Computed Tomography For Breast Imaging, Yang Lou Dec 2017

System Optimization And Iterative Image Reconstruction In Photoacoustic Computed Tomography For Breast Imaging, Yang Lou

Engineering and Applied Science Theses & Dissertations

Photoacoustic computed tomography(PACT), also known as optoacoustic tomography (OAT), is an emerging imaging technique that has developed rapidly in recent years. The combination of the high optical contrast and the high acoustic resolution of this hybrid imaging technique makes it a promising candidate for human breast imaging, where conventional imaging techniques including X-ray mammography, B-mode ultrasound, and MRI suffer from low contrast, low specificity for certain breast types, and additional risks related to ionizing radiation. Though significant works have been done to push the frontier of PACT breast imaging, it is still challenging to successfully build a PACT breast ...


Improving Pure-Tone Audiometry Using Probabilistic Machine Learning Classification, Xinyu Song Aug 2017

Improving Pure-Tone Audiometry Using Probabilistic Machine Learning Classification, Xinyu Song

Engineering and Applied Science Theses & Dissertations

Hearing loss is a critical public health concern, affecting hundreds millions of people worldwide and dramatically impacting quality of life for affected individuals. While treatment techniques have evolved in recent years, methods for assessing hearing ability have remained relatively unchanged for decades. The standard clinical procedure is the modified Hughson-Westlake procedure, an adaptive pure-tone detection task that is typically performed manually by audiologists, costing millions of collective hours annually among healthcare professionals. In addition to the high burden of labor, the technique provides limited detail about an individual’s hearing ability, estimating only detection thresholds at a handful of pre-defined ...