Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Using Eeg-Validated Music Emotion Recognition Techniques To Classify Multi-Genre Popular Music For Therapeutic Purposes, Dejoy Shastikk Kumaran Jun 2018

Using Eeg-Validated Music Emotion Recognition Techniques To Classify Multi-Genre Popular Music For Therapeutic Purposes, Dejoy Shastikk Kumaran

The International Student Science Fair 2018

Music is observed to possess significant beneficial effects to human mental health, especially for patients undergoing therapy and older adults. Prior research focusing on machine recognition of the emotion music induces by classifying low-level music features has utilized subjective annotation to label data for classification. We validate this approach by using an electroencephalography-based approach to cross-check the predictions of music emotion made with the predictions from low-level music feature data as well as collected subjective annotation data. Collecting 8-channel EEG data from 10 participants listening to segments of 40 songs from 5 different genres, we obtain a subject-independent classification accuracy ...


Using Eeg-Validated Music Emotion Recognition Techniques To Classify Multi-Genre Popular Music For Therapeutic Purposes, Dejoy Shastikk Kumaran Jun 2018

Using Eeg-Validated Music Emotion Recognition Techniques To Classify Multi-Genre Popular Music For Therapeutic Purposes, Dejoy Shastikk Kumaran

The International Student Science Fair 2018

Music is observed to possess significant beneficial effects to human mental health, especially for patients undergoing therapy and older adults. Prior research focusing on machine recognition of the emotion music induces by classifying low-level music features has utilized subjective annotation to label data for classification. We validate this approach by using an electroencephalography-based approach to cross-check the predictions of music emotion made with the predictions from low-level music feature data as well as collected subjective annotation data. Collecting 8-channel EEG data from 10 participants listening to segments of 40 songs from 5 different genres, we obtain a subject-independent classification accuracy ...


Modular Machine Learning Methods For Computer-Aided Diagnosis Of Breast Cancer, Mia Kathleen Markey '94 Jun 2002

Modular Machine Learning Methods For Computer-Aided Diagnosis Of Breast Cancer, Mia Kathleen Markey '94

Doctoral Dissertations

The purpose of this study was to improve breast cancer diagnosis by reducing the number of benign biopsies performed. To this end, we investigated modular and ensemble systems of machine learning methods for computer-aided diagnosis (CAD) of breast cancer. A modular system partitions the input space into smaller domains, each of which is handled by a local model. An ensemble system uses multiple models for the same cases and combines the models' predictions.

Five supervised machine learning techniques (LDA, SVM, BP-ANN, CBR, CART) were trained to predict the biopsy outcome from mammographic findings (BIRADS™) and patient age based on a ...