Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Biomedical Engineering and Bioengineering

Biocompatible Flavone-Based Fluorogenic Probes For Quick Wash-Free Mitochondria! Imaging In Living Cells, Bin Liu, Mickey Shah, Ge Zhang, Qin Liu, Yi Pang Sep 2015

Biocompatible Flavone-Based Fluorogenic Probes For Quick Wash-Free Mitochondria! Imaging In Living Cells, Bin Liu, Mickey Shah, Ge Zhang, Qin Liu, Yi Pang

Yi Pang

Mitochondria, vital organelles existing in almost all eukaryotic cells, play a crucial role in energy metabolism and apoptosis of aerobic organisms. In this work, we report two new flavone-based fluorescent probes, MC-Mito1 and MC-Mito2, for monitoring mitochondria in living cells. These two probes exhibit remarkably low toxicity, good cell permeability, and high specificity; these probes complement the existing library of mitochondrial imaging agents. The new dyes give nearly no background fluorescence, and their application does not require tedious postwashing after cell staining. The appreciable tolerance of MC-Mito2 encourages a broader range of biological applications for understanding the cell degeneration and ...


Biocompatible Flavone-Based Fluorogenic Probes For Quick Wash-Free Mitochondria! Imaging In Living Cells, Bin Liu, Mickey Shah, Ge Zhang, Qin Liu, Yi Pang Sep 2015

Biocompatible Flavone-Based Fluorogenic Probes For Quick Wash-Free Mitochondria! Imaging In Living Cells, Bin Liu, Mickey Shah, Ge Zhang, Qin Liu, Yi Pang

Ge Zhang

Mitochondria, vital organelles existing in almost all eukaryotic cells, play a crucial role in energy metabolism and apoptosis of aerobic organisms. In this work, we report two new flavone-based fluorescent probes, MC-Mito1 and MC-Mito2, for monitoring mitochondria in living cells. These two probes exhibit remarkably low toxicity, good cell permeability, and high specificity; these probes complement the existing library of mitochondrial imaging agents. The new dyes give nearly no background fluorescence, and their application does not require tedious postwashing after cell staining. The appreciable tolerance of MC-Mito2 encourages a broader range of biological applications for understanding the cell degeneration and ...


Computational Design Optimization For Microfluidic Magnetophoresis, Brian Plouffe, Laura Lewis, Shashi Murthy Jul 2013

Computational Design Optimization For Microfluidic Magnetophoresis, Brian Plouffe, Laura Lewis, Shashi Murthy

Shashi K. Murthy

Current macro- and microfluidic approaches for the isolation of mammalian cells are limited in both efficiency and purity. In order to design a robust platform for the enumeration of a target cell population, high collection efficiencies are required. Additionally, the ability to isolate pure populations with minimal biological perturbation and efficient off-chip recovery will enable subcellular analyses of these cells for applications in personalized medicine. Here, a rational design approach for a simple and efficient device that isolates target cell populations via magnetic tagging is presented. In this work, two magnetophoretic microfluidic device designs are described, with optimized dimensions and ...


Effects Of Electrostatic Correlations On Electrokinetic Phenomena, Brian Storey, Martin Bazant Oct 2012

Effects Of Electrostatic Correlations On Electrokinetic Phenomena, Brian Storey, Martin Bazant

Brian Storey

The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures the essential features in a simple continuum framework. The model is derived as a gradient approximation for nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator, scaled by a correlation length. The theory is able to capture ...


Quantitative Assessment Of Sample Stiffness And Sliding Friction From Force Curves In Atomic Force Microscopy, Nancy Burnham, Jon Pratt, Gordon Shaw, Lee Kumanchik Feb 2010

Quantitative Assessment Of Sample Stiffness And Sliding Friction From Force Curves In Atomic Force Microscopy, Nancy Burnham, Jon Pratt, Gordon Shaw, Lee Kumanchik

Nancy A. Burnham

It has long been recognized that the angular deflection of an atomic force microscope(AFM) cantilever under “normal” loading conditions can be profoundly influenced by the friction between the tip and the surface. It is shown here that a remarkably quantifiable hysteresis occurs in the slope of loading curves whenever the normal flexural stiffness of the AFM cantilever is greater than that of the sample. This situation arises naturally in cantilever-on-cantilever calibration, but also when trying to measure the stiffness of nanomechanical devices or test structures, or when probing any type of surface or structure that is much more compliant ...


Precision And Accuracy Of Thermal Calibration Of Atomic Force Microscopy Cantilevers, Nancy Burnham, G Matei, E Thoreson, J Pratt, D Newell Jul 2006

Precision And Accuracy Of Thermal Calibration Of Atomic Force Microscopy Cantilevers, Nancy Burnham, G Matei, E Thoreson, J Pratt, D Newell

Nancy A. Burnham

To have confidence in force measurements made with atomic force microscopes(AFMs), the spring constant of the AFM cantilevers should be known with good precision and accuracy, a topic not yet thoroughly treated in the literature. In this study, we compared the stiffnesses of uncoated tipless uniform rectangular silicon cantilevers among thermal, loading, and geometric calibration methods; loading was done against an artifact from the National Institute of Standards and Technology (NIST). The artifact was calibrated at NIST using forces that were traceable to the International System of units. The precision and accuracy of the thermal method were found to ...


Substrate Rigidity Regulates The Formation And Maintenance Of Tissues, Nancy Burnham, Wei-Hui Guo, Margo Frey, Yu-Li Wang Mar 2006

Substrate Rigidity Regulates The Formation And Maintenance Of Tissues, Nancy Burnham, Wei-Hui Guo, Margo Frey, Yu-Li Wang

Nancy A. Burnham

The ability of cells to form tissues represents one of the most fundamental issues in biology. However, it is unclear what triggers cells to adhere to one another in tissues and to migrate once a piece of tissue is planted on culture surfaces. Using substrates of identical chemical composition but different flexibility, we show that this process is controlled by substrate rigidity: on stiff substrates, cells migrate away from one another and spread on surfaces, whereas on soft substrates they merge to form tissue-like structures. Similar behavior was observed not only with fibroblastic and epithelial cell lines but also explants ...


Phase Imaging: Deep Or Superficial?, Nancy Burnham, O Behrend, L Odoni, J Loubet Oct 1999

Phase Imaging: Deep Or Superficial?, Nancy Burnham, O Behrend, L Odoni, J Loubet

Nancy A. Burnham

Phase images acquired while intermittently contacting a sample surface with the tip of an atomic force microscope cantilever are not easy to relate to material properties. We have simulated dynamic force curves and compared simulated with experimental results. For some cantilever–sample combinations, the interaction remains a surface effect, whereas for others, the tip penetrates the sample significantly. Height artifacts in the “topography” images, and the role of the sample stiffness, work of adhesion, damping, and topography in the cantilever response manifest themselves to different extents depending on the indentation depth.


Elastic And Shear Moduli Of Single-Walled Carbon Nanotube Ropes, Nancy Burnham, Jean-Paul Salvetat, G Andrew D Briggs, Jean-Marc Bonard, Revathi Bacsa, Andrzej Kulik, Thomas Stöckli, László Forró Jan 1999

Elastic And Shear Moduli Of Single-Walled Carbon Nanotube Ropes, Nancy Burnham, Jean-Paul Salvetat, G Andrew D Briggs, Jean-Marc Bonard, Revathi Bacsa, Andrzej Kulik, Thomas Stöckli, László Forró

Nancy A. Burnham

Carbon nanotubes are believed to be the ultimate low-density high-modulus fibers, which makes their characterization at nanometer scale vital for applications. By using an atomic force microscope and a special substrate, the elastic and shear moduli of individual single-walled nanotube (SWNT) ropes were measured to be of the order of 1 TPa and 1 GPa, respectively. In contrast to multiwalled nanotubes, an unexpectedly low intertube shear stiffness dominated the flexural behavior of the SWNT ropes. This suggests that intertube cohesion should be improved for applications of SWNT ropes in high-performance composite materials.


Friction Anisotropy And Asymmetry Of A Compliant Monolayer Induced By A Small Molecular Tilt, Nancy Burnham, M Liley, D. Gourdon, Dimitrios Stamou, U Meseth, T Fischer, C Lautz, H Stahlberg, H Vogel, C Duschl Apr 1998

Friction Anisotropy And Asymmetry Of A Compliant Monolayer Induced By A Small Molecular Tilt, Nancy Burnham, M Liley, D. Gourdon, Dimitrios Stamou, U Meseth, T Fischer, C Lautz, H Stahlberg, H Vogel, C Duschl

Nancy A. Burnham

Lateral force microscopy in the wearless regime was used to study the friction behavior of a lipid monolayer on mica. In the monolayer, condensed domains with long-range orientational order of the lipid molecules were present. The domains revealed unexpectedly strong friction anisotropies and non-negligible friction asymmetries. The angular dependency of these effects correlated well with the tilt direction of the alkyl chains of the monolayer, as determined by electron diffraction and Brewster angle microscopy. The molecular tilt causing these frictional effects was less than 15 degrees, demonstrating that even small molecular tilts can make a major contribution to friction.


Scanning Local‐Acceleration Microscopy, Nancy Burnham, A. Kulik, G. Gremaud, P. Gallo, F. Oulevey Feb 1996

Scanning Local‐Acceleration Microscopy, Nancy Burnham, A. Kulik, G. Gremaud, P. Gallo, F. Oulevey

Nancy A. Burnham

By adapting a scanning force microscope to operate at frequencies above the highest tip–sample resonance, the sensitivity of the microscope to materials’ properties is greatly enhanced. The cantilever’s behavior in response to high‐frequency excitation from a transducer underneath the sample is fundamentally different than to its low‐frequency response. In this article, the motivations, instrumentation, theory, and first results for this technique are described.


Materials’ Properties Measurements: Choosing The Optimal Scanning Probe Microscope Configuration, Nancy Burnham, G Gremaud, A Kulik, P Gallo, F Oulevey Feb 1996

Materials’ Properties Measurements: Choosing The Optimal Scanning Probe Microscope Configuration, Nancy Burnham, G Gremaud, A Kulik, P Gallo, F Oulevey

Nancy A. Burnham

Rheological models are used to represent different scanning probe microscope configurations. The solutions for their static and dynamic behavior are found and used to analyze which scanning probe microscope configuration is best for a given application. We find that modulating the sample at high frequencies results in the best microscope behavior for measuring the stiffness of rigid materials, and that by modulating the tip at low frequencies and detecting the motion of the tip itself (not its position relative to the tip holder) should be best for studying compliant materials in liquids.


Nanosubharmonics: The Dynamics Of Small Nonlinear Contacts, Nancy Burnham, A Kulik, G Gremaud, Gad Briggs Jun 1995

Nanosubharmonics: The Dynamics Of Small Nonlinear Contacts, Nancy Burnham, A Kulik, G Gremaud, Gad Briggs

Nancy A. Burnham

We observed the generation of subharmonics and chaos in a nanometer-sized mechanical contact. To first order, the behavior matches that of macroscopic systems, with some intriguing secondary differences. As the occurrence of periodic behavior (subharmonics) is related to the coefficient of restitution, it may be possible to image local energy dissipation with nanometer resolution.


Burnham, Colton, And Pollock Reply, Nancy Burnham, Rj Colton, Hm Pollock Jan 1993

Burnham, Colton, And Pollock Reply, Nancy Burnham, Rj Colton, Hm Pollock

Nancy A. Burnham

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author (s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder


Work-Function Anisotropies As An Origin Of Long-Range Surface Forces, Nancy Burnham, R Colton, H Pollock Jul 1992

Work-Function Anisotropies As An Origin Of Long-Range Surface Forces, Nancy Burnham, R Colton, H Pollock

Nancy A. Burnham

Unusual effects noticed in previous force microscopy data are explained by a model based on work-function anisotropies and their associated patch charges. Measurable forces between macroscopic bodies can be due to the interaction of patch charges, with important consequences in the fields of surface forces, contact mechanics, adhesion, Schottky barriers, and the surface properties of insulators.


Interpretation Issues In Force Microscopy, Nancy Burnham, Richard Colton, Hubert Pollock Jun 1991

Interpretation Issues In Force Microscopy, Nancy Burnham, Richard Colton, Hubert Pollock

Nancy A. Burnham

In this paper, we will discuss force microscopy (FM) and its potential for determining mechanical properties of thin films. We will introduce the basic principles of FM, and demonstrate how FM can be used to determine materials properties as well as image surface topography, both with nanonewton or sub‐nanonewton force resolution and sub‐nanometer position resolution. As FM is still a new field, not all of the questions concerning interpretation have been fully answered. We will elucidate four current issues that must be resolved before the full potential of FM can be realized. They are: (1) the role of ...


On The Electrochemical Etching Of Tips For Scanning Tunneling Microscopy, Nancy Burnham, J. Ibe, P. Bey Jr., S. Brandow, R. Brizzolara, D. Dilella, K. Lee, C. K. Marrian, R. Colton Jun 1990

On The Electrochemical Etching Of Tips For Scanning Tunneling Microscopy, Nancy Burnham, J. Ibe, P. Bey Jr., S. Brandow, R. Brizzolara, D. Dilella, K. Lee, C. K. Marrian, R. Colton

Nancy A. Burnham

The sharpness of tips used in scanning tunneling microscopy(STM) is one factor which affects the resolution of the STM image. In this paper, we report on a direct‐current (dc) drop‐off electrochemicaletching procedure used to sharpen tips for STM. The shape of the tip is dependent on the meniscus which surrounds the wire at the air–electrolyte interface. The sharpness of the tip is related to the tensile strength of the wire and how quickly the electrochemical reaction can be stopped once the wire breaks. We have found that the cutoff time of the etch circuit has a ...


Probing The Surface Forces Of Monolayer Films With An Atomic-Force Microscope, Nancy Burnham, Dawn Dominguez, Robert Mowery, Richard Colton Apr 1990

Probing The Surface Forces Of Monolayer Films With An Atomic-Force Microscope, Nancy Burnham, Dawn Dominguez, Robert Mowery, Richard Colton

Nancy A. Burnham

Using an atomic force microscope (AFM), we have studied the attractive and adhesive forces between a cantilever tip and sample surfaces as a function of sample surface energy. The measured forces systematically increased with surface energy. The AFM is very sensitive; changes in the surface forces (i.e., attraction and adhesion) of monolayer covered samples could be clearly discerned when only the surface group of the monolayer film was changed from -CH3 to -CF3.


Electron Beam Effects In The Analysis Of Compound Semiconductors And Devices, Nancy Burnham, Ll Kazmerski, Ab Swartzlander, Aj Nelson, Se Asher Aug 1987

Electron Beam Effects In The Analysis Of Compound Semiconductors And Devices, Nancy Burnham, Ll Kazmerski, Ab Swartzlander, Aj Nelson, Se Asher

Nancy A. Burnham

The effects of electron beams on the analysis of CuInSe2surfaces are examined in this paper. Potential changes in the surface chemistry—including oxidation and desorption—under a range of incident probe conditions, are investigated for possible artifactual information generation. Emphasis is placed on the relationships between beam conditions and oxygen chemisorption and physisorption, since oxygen treatments of devices utilizing this semiconductor are critical to performance. Single crystals and polycrystalline thin films are analyzed and compared to establish the beam‐induced phenomena.


Scanning Auger Microprobe Studies Of Ball Cratered Cds/Cuinse2 Solar Cells, Nancy Burnham, Ll Levenson, Rj Matson, R Noufi, Ll Kazmerski Apr 1986

Scanning Auger Microprobe Studies Of Ball Cratered Cds/Cuinse2 Solar Cells, Nancy Burnham, Ll Levenson, Rj Matson, R Noufi, Ll Kazmerski

Nancy A. Burnham

CdS/CuInSe2solar cell films are typically several micrometers thick. Composition profiles of these films are usually carried out on fracture cross sections by scanning Auger microscopy or by recording Auger spectra during ion milling. For fracture cross sections, the depth resolution depends on the electron beam diameter and the roughness of the fracture surface. Ion milling is time consuming, and artifacts are caused by ion beam faceting. Ball cratering requires only a fraction of an hour and provides significant magnification of the film cross section. There is sufficient contrast, both in optical and electron microscopy, to distinguish between CdS and ...