Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Increased Excitability Induced In The Primary Motor Cortex By Transcranial Ultrasound Stimulation, Benjamin C. Gibson, Joseph L. Sanguinetti, Bashar W. Badran, Alfred B. Yu, Evan P. Klein, Christopher C. Abbott, Jeffrey T. Hansberger, Vincent P. Clark Nov 2018

Increased Excitability Induced In The Primary Motor Cortex By Transcranial Ultrasound Stimulation, Benjamin C. Gibson, Joseph L. Sanguinetti, Bashar W. Badran, Alfred B. Yu, Evan P. Klein, Christopher C. Abbott, Jeffrey T. Hansberger, Vincent P. Clark

Publications and Research

Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability and neuroplasticity for a variety of research and clinical applications. The effects of tUS on cortical excitability are still unclear, and further complications arise from the wide parameter space offered by various types of devices, transducer arrangements, and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly available systems that may be useful for tUS. However, the feasibility of modifying brain activity with diagnostic tUS ...


Utilizing Fast Spin Echo Mri To Reduce Image Artifacts And Improve Implant/Tissue Interface Detection In Refractory Parkinson’S Patients With Deep Brain Stimulators, Subhendra N. Sarkar, Pooja R. Sarkar, Efstathios Papavassiliou, Rafael Rojas Feb 2014

Utilizing Fast Spin Echo Mri To Reduce Image Artifacts And Improve Implant/Tissue Interface Detection In Refractory Parkinson’S Patients With Deep Brain Stimulators, Subhendra N. Sarkar, Pooja R. Sarkar, Efstathios Papavassiliou, Rafael Rojas

Publications and Research

Introduction. In medically refractory Parkinson’s disease (PD) deep-brain stimulation (DBS) is an effective therapeutic tool. Postimplantation MRI is important in assessing tissue damage and DBS lead placement accuracy. We wanted to identify which MRI sequence can detectDBS leads with smallest artifactual signal void, allowing better tissue/electrode edge conspicuity.

Methods. Using an IRB approved protocol 8 advanced PDpatientswere imagedwithinMRconditional safety guidelines at lowRF power (SAR ≤ 0.1 W/kg) in coronal plane at 1.5T by various sequences.The image slices were subjectively evaluated for diagnostic quality and the lead contact diameters were compared to identify a sequence least ...