Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Biomedical Engineering and Bioengineering

Enhancing Human Schwann Cells Reparative Behavior Using Heparin/Collagen Layer-By-Layer Coatings, Luis Carlos Pinzon-Herrera Dec 2022

Enhancing Human Schwann Cells Reparative Behavior Using Heparin/Collagen Layer-By-Layer Coatings, Luis Carlos Pinzon-Herrera

Graduate Theses and Dissertations

When a peripheral nerve injury (PNI) occurs, the gold standard for tissue regeneration is the use of autografts. However, due to the secondary effects produced by multiple surgeries involved in the removal and implantation of autografts for very small lesions, it is possible to replace them with the use of Nerve Guide Conduits (NGCs). However, NGCs are limited to short lesions (less than 1 cm). This limitation is caused by the absence of compounds in the extracellular matrix (ECM) that autografts can provide. Since much of the regenerative process takes place on the NGC surface, our work aims to modify …


Synthesis And Performance Testing Of Ecm Fiber Scaffolds, Cassandra Reed Jul 2021

Synthesis And Performance Testing Of Ecm Fiber Scaffolds, Cassandra Reed

Graduate Theses and Dissertations

The progression of regenerative medicine has advanced the treatment of multiple illnesses and injuries throughout the years. A good example of the benefits of this research is the work that has gone into volumetric muscle loss (VML), where more than 20% of the muscle is loss. Skeletal muscle makes up 40% of the human body so a loss of that size greatly diminishes the strength, the flexibility, physiology, and quality of life of the injured individual. For that reason, various techniques are used to counteract the loss of structure and innate cellular signaling in order to circumvent that from happening. …


Injectable Gelatin-Silk Fibroin Composite Hydrogels For In Situ Cell Encapsulation, Ryann D. Boudreau Jan 2021

Injectable Gelatin-Silk Fibroin Composite Hydrogels For In Situ Cell Encapsulation, Ryann D. Boudreau

Honors Theses and Capstones

Hydrogels are widely used tools for tissue engineering and regenerative medicine. Characterized as biofunctional, water-based polymer matrices with tunable mechanical properties, hydrogels have promising but limited applications in biomedical engineering, due to poor and static matrix strength. Here we plan to rectify this issue by introducing a new hydrogel made from a composite of gelatin and silk fibroin crosslinked by microbial transglutaminase (mTG) instantly and beta sheet formation gradually, respectively. This interpenetrating network (IPN) shows enhanced mechanical stiffness and strength compared to gelatin hydrogels, and is capable of encapsulating human cells with high viability demonstrated by the encapsulation of human …


Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi Jan 2021

Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi

Dissertations and Theses

Low back pain is the most common cause of disability in the world and is often caused by degeneration or injury of the intervertebral disc (IVD). The IVD is a complex, fibrocartilaginous tissue that allows for the wide range of spinal mobility. Disc degeneration is a progressive condition believed to begin in the central, gelatinous nucleus pulposus (NP) region of the tissue, for which there are few preventative therapies. Current therapeutic strategies include pain management and exercise, or surgical intervention such as spinal fusion, none of which address the underlying cause of degeneration. With an increasingly aging population, the socioeconomic …


Elucidating Mechanisms Of Metastasis With Implantable Biomaterial Niches, Ryan Adam Carpenter Jul 2020

Elucidating Mechanisms Of Metastasis With Implantable Biomaterial Niches, Ryan Adam Carpenter

Doctoral Dissertations

Metastasis is the leading cause of cancer related deaths, yet it remains the most poorly understood aspect of tumor biology. This can be attributed to the lack of relevant experimental models that can recapitulate the complex and lengthy progression of metastatic relapse observed in patients. Mouse models have been widely used to study cancer, however they are critically limited to study metastasis. Most models generate aggressive metastases in the lung without the use of unique cell lines or specialized injection techniques. This limits the ability to study disseminated tumor cells (DTCs) in other relevant metastasis prone tissues. Prolonged observation of …


Hydrolytic Degradation Study Of Polyphosphazene-Plga Blends, Riley Blumenfield May 2020

Hydrolytic Degradation Study Of Polyphosphazene-Plga Blends, Riley Blumenfield

Honors Scholar Theses

The synthesis and in vitro degradation analysis of thin films of poly[(glycineethylglycinato)75(phenylphenoxy)25phosphazene]
(PNGEG75PhPh25) and poly[(ethylphenylalanato)25(glycine-
ethylglycinato)75phosphazene] (PNEPA25GEG75) blended with poly(lactic-co-glycolic acid) (PLGA) was conducted to determine the blends’ potential for use as scaffolding materials for tissue regeneration applications. The samples were synthesized with glycylglycine ethyl ester (GEG) acting as the primary substituent side group, with cosubstitution by phenylphenol (PhPh) and phenylalanine ethyl ester (EPA) to make the final product [1]. Blends of 25% polyphosphazene, 75% PLGA and 50% polyphosphazene, 50% PLGA were …


The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun Dec 2019

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) bioscaffolds are a promising platform for the delivery of pro-regenerative cell populations with the goal of promoting adipose tissue regeneration. The current study investigated the effects of seeding DAT bioscaffolds with syngeneic bone marrow-derived macrophages and/or adipose-derived stromal cells (ASCs) on in vivo soft tissue regeneration. Methods were established to derive the macrophages from MacGreen mice, which were dynamically seeded onto the DAT scaffolds alone or in combination with ASCs. Seeded and unseeded scaffolds were implanted subcutaneously into C57Bl/6 mice. At 2 and 4 weeks, cell infiltration, angiogenesis, and adipogenesis were analyzed through histology and immunohistochemistry. …


Design, Construction And Application Of A Home-Built, Two-Photon Microscope, William P. Breeding Aug 2019

Design, Construction And Application Of A Home-Built, Two-Photon Microscope, William P. Breeding

Electronic Theses and Dissertations

Two-photon microscopy (TPM) is a powerful, versatile imaging modality for the study of biological systems. This thesis overviews the relevant physics involved in TPM, design considerations and process of constructing a home-built, two-photon microscope, and provides a set of procedures to operate the system. Furthermore, this work explores several applications of TPM through the study of single-cell metabolism and imaging the cellular-material interface. Explored in particular depth was the imaging of cellulose nanofiber (CNF) materials, with the goal of understanding the three-dimensional nature of fibroblast cell growth when embedded within the materials. This work uncovered several optical properties of CNF, …


Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim Aug 2019

Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim

Graduate Theses and Dissertations

Volumetric muscle loss (VML) is a traumatic injury in skeletal muscle resulting in the bulk loss of more than 20% of the muscle’s volume. Included in the bulk loss of muscle is the skeletal muscle niche comprised of nerve bundles, vasculature, local progenitor cells, basal lamina, and muscle fibers, overwhelming innate repair mechanisms. The hallmark of VML injury is the excessive accumulation of non-contractile, fibrotic tissue and permanent functional deficits. Though predominant in the younger demographic, the elderly population is also captured within VML injuries. There are many factors that change with aging in skeletal muscle that may further hinder …


Biophysical Features Of The Extracellular Matrix Direct Breast Cancer Metastasis, Alyssa Schwartz Nov 2018

Biophysical Features Of The Extracellular Matrix Direct Breast Cancer Metastasis, Alyssa Schwartz

Doctoral Dissertations

Breast cancer is plagued by two key clinical challenges; drug resistance and metastasis. Most work to date probes these events on an extremely rigid plastic surface, which recapitulates few aspects of these processes in humans. A malignant cell first resides in breast tissue, then likely travels to the bone, brain, liver, or lung, each of which has a distinct mechanical and biochemical profile. Cells transmit mechanical forces into intracellular tension and biochemical signaling events, and here we hypothesize that this mechanotransduction influences drug response, growth, and migration. To probe the impact of extracellular matrix on drug resistance, we defined a …


Decellularized Matrices Effect On The Adaptive Immune Response, Kegan Sowers Jan 2018

Decellularized Matrices Effect On The Adaptive Immune Response, Kegan Sowers

Theses and Dissertations

Decellularized extracellular matrices have been a growing area of interest in the biomedical engineering fields of tissue engineering and regenerative medicine.As these materials move toward clinical applications, the immune response to these materials will be a driving force toward their success in clinical approaches. Fully digested decellularized matrix constructs derived from porcine liver, muscle and lung were created to test the adaptive immune response. Hydrogel characterization ensured that the materials had relatively similar stiffness levels to reduce variability, and in vitro studies were conducted. Each individual construct as well as a gelatin control were plated with a co-culture of macrophages …


Engineering Surface Properties To Modulate Inflammation And Stem Cell Recruitment Through Macrophage Activation, Kelly M. Hotchkiss Jan 2018

Engineering Surface Properties To Modulate Inflammation And Stem Cell Recruitment Through Macrophage Activation, Kelly M. Hotchkiss

Theses and Dissertations

Biomaterials are becoming the most commonly used therapeutic method for treatment of lost or damaged tissue in the body. Metallic materials are chosen for high strength orthopaedic and dental applications. Titanium (Ti) implants are highly successful in young, healthy patients with the ability to fully integrate to surrounding tissue. However the main population requiring these corrective treatments will not be healthy or young, therefore further research into material modifications have been started to improve outcomes in compromised patients. The body’s immune system will generate a response to any implanted material, and control the final outcome. Among the first and most …


Alginate Hydrogels As Three-Dimensional Scaffolds For In Vitro Culture Models Of Growth Plate Cartilage Development And Porcine Embryo Elongation, Taylor D. Laughlin Jul 2016

Alginate Hydrogels As Three-Dimensional Scaffolds For In Vitro Culture Models Of Growth Plate Cartilage Development And Porcine Embryo Elongation, Taylor D. Laughlin

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

The establishment of in vitro culture models utilizes tissue engineering principles to design functional mimics of in vivo environments in vitro. Advantages for the use of in vitro culture models include ethical alleviation of animal models for therapeutic testing, cost efficiency, and a greater ability to study specific mechanisms via a systematic, ground-up approach to development. In this thesis, alginate hydrogels are utilized in the development of in vitro culture models of porcine embryo elongation and growth plate cartilage development. First, the effect of scaffold and modifications to the scaffold were explored in both projects. In order to modulate …


Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu Jun 2016

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review …


Harnessing Notch Signaling For Biomaterial Scaffold-Based Bone Regeneration, Helena P. Lysandrou, Chunhui Jiang, Naagarajan Narayanan, Shihuan Kuang, Meng Deng Aug 2015

Harnessing Notch Signaling For Biomaterial Scaffold-Based Bone Regeneration, Helena P. Lysandrou, Chunhui Jiang, Naagarajan Narayanan, Shihuan Kuang, Meng Deng

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bone fracture has recently become prevalent, especially with an increasingly aging population. Current bone grafts procedures, including autografts and allografts, are hindered by multiple factors, such as limited supplies and inconsistent bone healing. Scaffold-based bone tissue engineering emerges as a prospective strategy to aid in bone regeneration through delivery of growth factors such as bone morphogenic proteins (BMPs). However, the use of BMPs suffers from several drawbacks such as protein instability and immunogenicity. Therefore, there exists a great need for the development of novel therapies to promote bone healing. Notch signaling, a pathway critical for cell-fate determination has been shown …


Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague Aug 2015

Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague

Masters Theses

Photo-crosslinkable polymeric biomaterials have emerged in the field of biomedical research to promote tissue regeneration. For example, scaffolds that can be crosslinked and hardened in situ have been known to make suitable implant alternatives. Since injectable and photo-crosslinkable biomaterials offer the advantage of being minimally invasive, they have emerged to compete with autografts, a current highly invasive method to repair diseased tissue. A series of novel photo-crosslinkable, injectable, and biodegradable nano-hybrid polymers consisting of poly(ε-caprolactone fumarate) (PCLF) and polyhedral oligomeric silsesquioxane (POSS) has been synthesized in our laboratory via polycondensation. To engineer the material properties of the nano-hybrid networks, varied …


Finite Element Analysis Of The Application Of Ultrasound-Generated Acoustic Radiation Force To Biomaterials, Nicole J. Piscopo May 2015

Finite Element Analysis Of The Application Of Ultrasound-Generated Acoustic Radiation Force To Biomaterials, Nicole J. Piscopo

Honors Scholar Theses

While most bone fractures can heal simply by being stabilized, others can take a longer time to rejoin or they could fail to merge back together completely. Numerous studies have shown the positive effects that ultrasonic therapy have had on delayed-union and non-union bone fracture repair but little is known as to what specific biological mechanisms are at play. Ultrasound may be a valuable tool for bone tissue regeneration at these fracture sites using a tissue engineering approach, however, more must be understood about its impact on stimulating tissues to heal before this can be a reality. For that reason, …


Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa Oct 2012

Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa

Electronic Thesis and Dissertation Repository

Bone defects are a prevalent problem in orthopedics and dentistry. Calcium phosphate-based coatings and nanocomposites offer unique solutions towards producing scaffolds with suitable physical, mechanical and biological properties for bone regeneration.

We developed a novel method to synthesize hydroxyapatite (HA) particles with high aspect ratio using sol-gel chemistry and hydrothermal treatment. We obtained tunable pure-phase carbonated-HA in the form of micro/nanorods and nanowires (diameters 25-800 nm). To mimic the structure of bone, HA nanowires were homogenously mixed within poly(ε-caprolactone) (PCL) to produce nanocomposites with improved mechanical properties as determined by uniaxial tensile testing.

Surface chemistry and topography of biomaterials play …


Investigation Of A New Material For Heart Valve Tissue Engineering, Claire Brougham, Gerard Cooney, Thomas Flanagan, Stefan Jockenhoevel, Fergal O'Brien Sep 2012

Investigation Of A New Material For Heart Valve Tissue Engineering, Claire Brougham, Gerard Cooney, Thomas Flanagan, Stefan Jockenhoevel, Fergal O'Brien

Conference Papers

No abstract provided.


Development And Characterization Of Plga And Eptfe Blood Vessel Mimics Using Gene Expression Analysis, Michael Gibbons, Sarah Ur Jun 2012

Development And Characterization Of Plga And Eptfe Blood Vessel Mimics Using Gene Expression Analysis, Michael Gibbons, Sarah Ur

Biomedical Engineering

Tissue engineered blood vessels (TEBV’s) have the potential to act not only as a replacement for diseased vessels, but also as a testing platform for intravascular devices such as stents. To this end, the goal of this study was to develop protocols for the construction of TEBV’s composed of human vascular cells and either expanded polytetrafluoroethylene (ePTFE) or poly-lactic-co-glycolic acid (PLGA), as well as a protocol for gene expression in those TEBV’s. Initial experiments involved only human umbilical vein endothelial cells (HUVEC’s), but after low cell confluency and spreading in single-sodded vessels a second cell type, human umbilical vein smooth …