Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Biophysics

Glucose metabolism

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman Aug 2017

Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman

Lisa Hoffman

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate ...


Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman Jun 2011

Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman

Robarts Imaging Publications

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate ...