Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

In-Vivo Ct Dosimetry During Virtual Colonoscopy, Jonathon W. Mueller Aug 2011

In-Vivo Ct Dosimetry During Virtual Colonoscopy, Jonathon W. Mueller

UT GSBS Dissertations and Theses (Open Access)

Virtual colonoscopy (VC) is a minimally invasive means for identifying colorectal polyps and colorectal lesions by insufflating a patient’s bowel, applying contrast agent via rectal catheter, and performing multi-detector computed tomography (MDCT) scans. The technique is recommended for colonic health screening by the American Cancer Society but not funded by the Centers for Medicare and Medicaid Services (CMS) partially because of potential risks from radiation exposure. To date, no in‐vivo organ dose measurements have been performed for MDCT scans; thus, the accuracy of any current dose estimates is currently unknown.

In this study, two TLDs were affixed to ...


Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman Jun 2011

Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman

Robarts Imaging Publications

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate ...


Modeling Lung Tissue Motions And Deformations: Applications In Tumor Ablative Procedures, Ali Sadeghi Naini May 2011

Modeling Lung Tissue Motions And Deformations: Applications In Tumor Ablative Procedures, Ali Sadeghi Naini

Electronic Thesis and Dissertation Repository

Various types of motion and deformation that the lung undergoes during minimally invasive tumor ablative procedures have been investigated and modeled in this dissertation. The lung frequently undergoes continuous large respiratory deformation, which can greatly affect the pre-planned outcome of the operation, hence deformation compensation becomes necessary. The first type of major deformation involved in a target lung throughout a tumor ablative procedure is the one encountered in procedures where the lung is totally deflated before starting the operation. A consequence of this deflation is that pre-operative images (acquired while the lung was partially inflated) become inaccurate for targeting the ...