Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Biomaterials Approaches For Utilizing The Regenerative Potential Of The Peripheral Nerve Injury Microenvironment, Melissa Renee Wrobel Jan 2017

Biomaterials Approaches For Utilizing The Regenerative Potential Of The Peripheral Nerve Injury Microenvironment, Melissa Renee Wrobel

Wayne State University Dissertations

Clinically available treatments are insufficient to achieve full functional recovery in large (>3cm) peripheral nerve injuries (PNI). The objectives in this thesis were 1) to study often overlooked elements of intrinsic PNI repair including release of inhibitory CSPGs and post-injury responses of inflammatory macrophages and dedifferentiated Schwann cells; 2) to create biomaterial scaf-folds featuring topographical and adhesive cues to enhance neurite outgrowth; and 3) to test the ability of those cues to direct macrophages and Schwann cells towards a pro-regenerative phe-notype. It is hypothesized that recapitulating the positive and negative cues of the PNI microenvi-ronment can better improve regeneration. …


Biopolymer Electrospun Nanofiber Mats To Inactivate And Remove Bacteria, Katrina Ann Rieger Nov 2016

Biopolymer Electrospun Nanofiber Mats To Inactivate And Remove Bacteria, Katrina Ann Rieger

Doctoral Dissertations

The persistence of antibiotic resistance in bacterial pathogens remains a primary concern for immunocompromised and critically-ill hospital patients. Hospital associated infections can be deadly and reduce the successes of medical advancements, such as, cancer therapies and medical implants. Thus, it is imperative to develop materials that can (i) deliver new antibiotics with accuracy, as well as (ii) uptake pathogenic microbes. In this work, we will demonstrate that electrospun nanofiber mats offer a promising platform for both of these objectives because of their high surface-to-volume ratio, interconnected high porosity, gas permeability, and ability to contour to virtually any surface. To provide …


Electrospinning Of Polycaprolactone Core-Shell Nanofibers With Anti-Cancer Drug, Sakib Iqbal, Mujibur Khan, Saheem Absar, Andrew Diamanduros, Samuel Chambers Apr 2015

Electrospinning Of Polycaprolactone Core-Shell Nanofibers With Anti-Cancer Drug, Sakib Iqbal, Mujibur Khan, Saheem Absar, Andrew Diamanduros, Samuel Chambers

GS4 Georgia Southern Student Scholars Symposium

Encapsulation of a model anti-cancer drug, 5-Fluorouracul (5-FU) into biocompatible core-shell nanofibers of polycaprolactone (PCL) nanofibers was fabricated using a coaxial electrospinning process. Our work aims to solve these issues using a novel method of fabrication of fibers featuring confinement of drugs within a biodegradable core-shell structure, thereby permitting sustained release of drugs to specific sites of treatment, such as tissues affected with tumor cells. The coaxial electrospinning was performed using a sheath polymer solution consisting of a 14 wt% PCL solution and a 5 wt% solution of 5-FU as the core solution. Dimethylformamide (DMF) was used as the solvent …


Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D. Jul 2013

Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D.

Florin Bobaru Ph.D.

The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as ‘long-range’. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical …


Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D. Jan 2007

Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as ‘long-range’. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical …