Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

2015

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 31

Full-Text Articles in Biomedical Engineering and Bioengineering

Getting To The Root Of Bacterial Hairs: What Is “S”?, Rebecca Gaddis, Samantha O'Conner, Evan Anderson, Terri Camesano, Nancy Burnham Dec 2015

Getting To The Root Of Bacterial Hairs: What Is “S”?, Rebecca Gaddis, Samantha O'Conner, Evan Anderson, Terri Camesano, Nancy Burnham

Nancy A. Burnham

An atomic force microscope (AFM) was used to measure the steric forces of lipopolysaccharides (LPS) on the biofilm-forming bacteria, Pseudomonas aeruginosa. It is well known that LPS play a vital role in biofilm formation. These forces were characterized with a modified version of the Alexander and de Gennes (AdG) model for polymers, which is a function of equilibrium brush length, L, probe radius, R, temperature, T, separation distance, D, and an indefinite density variable, s. This last parameter was originally distinguished by de Gennes as the root spacing or mesh spacing depending upon the type of polymer adhesion; however since …


The Development Of A Novel Polymer Based System For Gene Delivery, Anh Van Le Nov 2015

The Development Of A Novel Polymer Based System For Gene Delivery, Anh Van Le

FIU Electronic Theses and Dissertations

Gene therapy involves the use of nucleic acids, either DNA or RNA for the treatment, cure, or prevention of human diseases. Synthetic cationic polymers are promising as a tool for gene delivery because of their high level of design flexibility for biomaterial construction and are capable of binding and condensing DNA through electrostatic interactions.

Our lab has developed a novel polymer (poly (polyethylene glycol-dodecanoate) (PEGD), a polyester of polyethylene glycol (PEG) and dodecanedioic acid (DDA). PEGD is a linear viscous polymer that self-assembles into a vesicle upon immersion in an aqueous solution. A copolymer of dodecanedioc acid and polyethylene glycol …


Cobalt Ferrite Nanoparticles Fabricated Via Co-Precipitation In Air: Overview Of Size Control And Magnetic Properties, Dennis Toledo Nov 2015

Cobalt Ferrite Nanoparticles Fabricated Via Co-Precipitation In Air: Overview Of Size Control And Magnetic Properties, Dennis Toledo

FIU Electronic Theses and Dissertations

Cobalt Ferrite has important, size-dependent magnetic properties. Consequently, an overview of particle size is important. Co-precipitation in air was the fabrication method used because it is comparatively simple and safe. The effects of three different reaction times including 1, 2, 3 hour(s) on particle size were compared. Also, the effectiveness of three different capping agents (Oleic Acid, Polyvinylpyrollidone (PVP), and Trisodium Citrate) in reducing aggregation and correspondingly particle size were examined. Using Welch’s analysis of variance (ANOVA) and the relevant post hoc tests, there was no significant difference (p=0.05) between reaction times of 1 hour and 2 hours, but there …


Incorporation Of Fibrin Into A Collagen–Glycosaminoglycan Matrix Results In A Scaffold With Improved Mechanical Properties And Enhanced Capacity To Resist Cell-Mediated Contraction, Claire Brougham, Tanya J. Levingstone, Stefan Jockenhoevel, Thomas C. Flanagan, Fergal J. O'Brien Oct 2015

Incorporation Of Fibrin Into A Collagen–Glycosaminoglycan Matrix Results In A Scaffold With Improved Mechanical Properties And Enhanced Capacity To Resist Cell-Mediated Contraction, Claire Brougham, Tanya J. Levingstone, Stefan Jockenhoevel, Thomas C. Flanagan, Fergal J. O'Brien

Articles

Fibrin has many uses as a tissue engineering scaffold, however many in vivo studies have shown a reduction in function resulting from the susceptibility of fibrin to cell-mediated contraction. The overall aim of the present study was to develop and characterise a reinforced natural scaffold using fibrin, collagen and glycosaminoglycan (FCG), and to examine the cell-mediated contraction of this scaffold in comparison to fibrin gels. Through the use of an injection loading technique, a homogenous FCG scaffold was developed. Mechanical testing showed a sixfold increase in compressive modulus and a thirtyfold increase in tensile modulus of fibrin when reinforced with …


The Role Of Biological Fluid And Dynamic Flow In The Behavior And Cellular Interactions Of Gold Nanoparticles, Emily K. Breitner, Saber M. Hussain, Kristen K. Comfort Sep 2015

The Role Of Biological Fluid And Dynamic Flow In The Behavior And Cellular Interactions Of Gold Nanoparticles, Emily K. Breitner, Saber M. Hussain, Kristen K. Comfort

Chemical and Materials Engineering Faculty Publications

Background: Due to their distinctive physicochemical properties, nanoparticles (NPs) have proven to be extremely advantageous for product and application development, but are also capable of inducing detrimental outcomes in biological systems. Standard in vitro methodologies are currently the primary means for evaluating NP safety, as vast quantities of particles exist that require appraisal. However, cell-based models are plagued by the fact that they are not representative of complex physiological systems. The need for a more accurate exposure model is highlighted by the fact that NP behavior and subsequent bioresponses are highly dependent upon their surroundings. Therefore, standard in vitro models …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu Aug 2015

Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu

Md Mahmudur Rahman

No abstract provided.


Simulating Low-Frequency Sonic Pulsations To Achieve Thrombolysis, Joseph C. Muskat, Matthew C. Pharris, Charles F. Babbs Aug 2015

Simulating Low-Frequency Sonic Pulsations To Achieve Thrombolysis, Joseph C. Muskat, Matthew C. Pharris, Charles F. Babbs

The Summer Undergraduate Research Fellowship (SURF) Symposium

Cardiovascular thrombosis may result in critical ischemia to a range of anatomical regions, constituting a leading cause of death in the United States. Current invasive treatments for such arterial blockages often yield blood clot recurrence, resulting in repeated hospitalization of patients. This research aims to show how internally introduced pressure oscillations may be used to initiate thrombolysis. We present a novel computational model for determining the resonant frequency and corresponding deformation of an idealized thrombus. Sinusoidal pressure differences across the thrombus induce axial displacements of frequency dependent amplitude. The maximum peak displacement occurs at a resonant frequency of 73 Hz …


Adsorption Mechanisms Of Palladium On The Tobacco Mosaic Virus Surface, Gloriia D. Novikova, Oluwamayowa Adigun, Erin Retzlaff-Roberts, Michael T. Harris Aug 2015

Adsorption Mechanisms Of Palladium On The Tobacco Mosaic Virus Surface, Gloriia D. Novikova, Oluwamayowa Adigun, Erin Retzlaff-Roberts, Michael T. Harris

The Summer Undergraduate Research Fellowship (SURF) Symposium

Organic-inorganic materials synthesis using biological templates has recently drawn immense attention of researchers. Biotemplating has shown to be an efficient and economic means of nanomaterials production. Naturally stable, readily available and genetically malleable, Tobacco Mosaic Virus (TMV) is one of the most extensively studied and characterized biotemplates. Particularly, templated synthesis using TMV has produced high quality nanorods and nanowires that have been applied to batteries, memory devices and catalysis. The fundamental mechanisms, governing the adsorption of palladium on the TMV Wild Type and genetically modified versions (TMV1Cys and TMV2Cys), are not fully understood; this knowledge, however, is essential for future …


Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague Aug 2015

Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague

Masters Theses

Photo-crosslinkable polymeric biomaterials have emerged in the field of biomedical research to promote tissue regeneration. For example, scaffolds that can be crosslinked and hardened in situ have been known to make suitable implant alternatives. Since injectable and photo-crosslinkable biomaterials offer the advantage of being minimally invasive, they have emerged to compete with autografts, a current highly invasive method to repair diseased tissue. A series of novel photo-crosslinkable, injectable, and biodegradable nano-hybrid polymers consisting of poly(ε-caprolactone fumarate) (PCLF) and polyhedral oligomeric silsesquioxane (POSS) has been synthesized in our laboratory via polycondensation. To engineer the material properties of the nano-hybrid networks, varied …


Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley Jun 2015

Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley

Materials Engineering

Atom level computer simulations of the arabinan and cellulose interface were performed to better understand the mechanisms that give arabinan-cellulose composites (ArCCs) their strength with the goal to improve man-made ArCCs. The molecular dynamics (MD) software LAMMPS was used in conjunction with the ReaxFF/c force field to model the bond between cellulose and arabinan. A cellulose nanocrystal with dimensions 51 x 32 x 8 Å was minimized with various weight percent of water, 0%, 3%, 5%, 8%, 10%, and 12%. After the system was equilibrated for at least 100,000 femtoseconds, an arabinan molecule composed of 8 arabinose rings was added …


Self-Contained Breathing Apparatus For Firefighter With A Permanent Stoma, Jason Delgadillo, Aaron Wheeler, Zachary Wishbow Jun 2015

Self-Contained Breathing Apparatus For Firefighter With A Permanent Stoma, Jason Delgadillo, Aaron Wheeler, Zachary Wishbow

Biomedical Engineering

The purpose of this project was to create a unique SCBA (self-contained breathing apparatus) for a firefighter named Chris Gauer. This prototype consists of a SCBA headgear connected to a polycarbonate-formed stoma mask with a medical-grade sanitary silicone hose.


The Microstructure And The Electrochemical Behavior Of Cobalt Chromium Molybdenum Alloys From Retrieved Hip Implants, Christopher P. Emerson May 2015

The Microstructure And The Electrochemical Behavior Of Cobalt Chromium Molybdenum Alloys From Retrieved Hip Implants, Christopher P. Emerson

FIU Electronic Theses and Dissertations

Because of their excellent mechanical, tribological, and electrochemical properties, Cobalt Chromium Molybdenum alloys have been used as the material for both the stem and head of modular hip implants. Corrosion is one mechanism by which metal debris, from these implants, is generated, which can lead to adverse events that requires revision surgery. Manufacturing process such as wrought, as-cast, and powder metallurgy influences the microstructure, material properties, and performance of these implants

The current research focuses on analyzing the microstructure of CoCrMo alloys from retrieved hip implants with optical and scanning electron microscopy. Additionally, energy disperse spectroscopy was utilized to determine …


Engineering The “Pluripotency” Of Zr-Based Bulk Metallic Glasses As Biomedical Materials, Lu Huang May 2015

Engineering The “Pluripotency” Of Zr-Based Bulk Metallic Glasses As Biomedical Materials, Lu Huang

Doctoral Dissertations

Bulk metallic glasses (BMGs) are a family of novel alloys with amorphous microstructures. The combination of their excellent mechanical properties, good chemical stability, high thermal formability, and general biocompatibility has brought up new opportunities for biomaterials. Research in this dissertation was focused on exploring multiple biomedical functionalities of Zr-based BMGs over a wide spectrum, combining materials and biological characterizations, through experimental and computational approaches. Four distinct yet interconnected tasks were endeavored, involving inflammation, hard-tissue implant, soft-tissue prosthesis, and pathogenic infection.

The inflammation that can be potentially triggered by Zr-based BMGs was investigated using macrophages. Lower level or comparable macrophage activations …


Electrospinning Of Polycaprolactone Core-Shell Nanofibers With Anti-Cancer Drug, Sakib Iqbal, Mujibur Khan, Saheem Absar, Andrew Diamanduros, Samuel Chambers Apr 2015

Electrospinning Of Polycaprolactone Core-Shell Nanofibers With Anti-Cancer Drug, Sakib Iqbal, Mujibur Khan, Saheem Absar, Andrew Diamanduros, Samuel Chambers

GS4 Georgia Southern Student Scholars Symposium

Encapsulation of a model anti-cancer drug, 5-Fluorouracul (5-FU) into biocompatible core-shell nanofibers of polycaprolactone (PCL) nanofibers was fabricated using a coaxial electrospinning process. Our work aims to solve these issues using a novel method of fabrication of fibers featuring confinement of drugs within a biodegradable core-shell structure, thereby permitting sustained release of drugs to specific sites of treatment, such as tissues affected with tumor cells. The coaxial electrospinning was performed using a sheath polymer solution consisting of a 14 wt% PCL solution and a 5 wt% solution of 5-FU as the core solution. Dimethylformamide (DMF) was used as the solvent …


In-Vivo Corrosion And Fretting Of Modular Ti-6al-4v/Co-Cr-Mo Hip Prostheses: The Influence Of Microstructure And Design Parameters, Jose Luis Gonzalez Jr Apr 2015

In-Vivo Corrosion And Fretting Of Modular Ti-6al-4v/Co-Cr-Mo Hip Prostheses: The Influence Of Microstructure And Design Parameters, Jose Luis Gonzalez Jr

FIU Electronic Theses and Dissertations

The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown …


Assessing Viscoelastic Properties Of Polydimethylsiloxane (Pdms) Using Loading And Unloading Of The Macroscopic Compression Test, Mustafa Fincan Apr 2015

Assessing Viscoelastic Properties Of Polydimethylsiloxane (Pdms) Using Loading And Unloading Of The Macroscopic Compression Test, Mustafa Fincan

USF Tampa Graduate Theses and Dissertations

Polydimethylsiloxane (PDMS) mechanical properties were measured using custom-built compression test device. PDMS elastic modulus can be varied with the elastomer base to the curing agent ratio, i.e. by changing the cross-linking density. PDMS samples with different crosslink density in terms of their elastic modulus were measured. In this project the PDMS samples with the base/curing agent ratio ranging from 5:1 to 20:1 were tested. The elastic modulus varied with the amount of the crosslinker, and ranged from 0.8 MPa to 4.44 MPa. The compression device was modified by adding digital displacement gauges to measure the lateral strain of the sample, …


Surface Modification Of Traditional And Bioresorbable Metallic Implant Materials For Improved Biocompatibility, Emily Kristine Walker Apr 2015

Surface Modification Of Traditional And Bioresorbable Metallic Implant Materials For Improved Biocompatibility, Emily Kristine Walker

Open Access Dissertations

Due to their strength, elasticity, and durability, a variety of metal alloys are commonly used in medical implants. Traditionally, corrosion-resistant metals have been preferred. These permanent materials can cause negative systemic and local tissue effects in the long-term. Permanent stenting can lead to late-stent thrombosis and in-stent restenosis. Metallic pins and screws for fracture fixation can corrode and fail, cause loss of bone mass, and contribute to inflammation and pain at the implant site, requiring reintervention. Corrodible metallic implants have the potential to prevent many of these complications by providing transient support to the affected tissue, dissolving at a rate …


Unveiling The Mechanical Behavior Of The Rod-Like Microstructure In The Radular Teeth Of Cryptochiton Stelleri, Enrique Escobar De Obaldia Apr 2015

Unveiling The Mechanical Behavior Of The Rod-Like Microstructure In The Radular Teeth Of Cryptochiton Stelleri, Enrique Escobar De Obaldia

Open Access Dissertations

Natural ceramics provided with high volume fractions of mineralized materials that are surrounded by a weak organic interface combine the stiff mechanical behavior of building blocks, like hydroxyapatite or aragonite, and the compliance of the organic surroundings. Unique mechanical properties (e.g. light density and toughness) distinguish bio-composites from common engineering materials. A key example is the highly mineralized shell of the radular teeth of the Crypochiton stelleri. Nature has provided the radular teeth with a highly oriented rod-like microstructure of nano-scale dimensions embedded in a matrix of chitin sheaths. Compared to other biological materials, the external iron oxide layer of …


Cell Adhesion Biophysics On Dynamic Polymer Constructs, Andreas Kourouklis Mar 2015

Cell Adhesion Biophysics On Dynamic Polymer Constructs, Andreas Kourouklis

Doctoral Dissertations

The biophysical characteristics of cell adhesion from single protein to cell length scales have primarily been studied using purely elastic substrates. However, natural extracellular matrix (ECM) is viscoelastic and contains mobile components. In this work, we combined chemistry and cell biology tools to design and characterize laterally mobile viscoelastic polymer films that promote receptor-specific cell adhesion. Moreover, we used amphiphilic block copolymers that are end-labeled with RGD peptide ligands to allow for integrin-mediated cell adhesion. The addition of a trace hydrophobic homopolymer in the supported bilayer block-copolymer films is used to tune the lateral mobility of the films. NIH 3T3 …


Continual Cell Deformation Induced Via Attachment To Oriented Fibers Enhances Fibroblast Cell Migration, Sisi Qin, Vincent Ricotta, Marcia Simon, Richard A. F. Clark, Miriam Rafailovich Mar 2015

Continual Cell Deformation Induced Via Attachment To Oriented Fibers Enhances Fibroblast Cell Migration, Sisi Qin, Vincent Ricotta, Marcia Simon, Richard A. F. Clark, Miriam Rafailovich

Department of Biomedical Engineering Faculty Publications

Fibroblast migration is critical to the wound healing process. In vivo, migration occurs on fibrillar substrates, and previous observations have shown that a significant time lag exists before the onset of granulation tissue. We therefore conducted a series of experiments to understand the impact of both fibrillar morphology and migration time. Substrate topography was first shown to have a profound influence. Fibroblasts preferentially attach to fibrillar surfaces, and orient their cytoplasm for maximal contact with the fiber edge. In the case of en-mass cell migration out of an agarose droplet, fibroblasts on flat surfaces emerged with an enhanced velocity, v …


Test Submission Title, Demo Uwyo Feb 2015

Test Submission Title, Demo Uwyo

Demo UWyo

This is my abstract.


Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam Jan 2015

Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam

Theses and Dissertations--Chemical and Materials Engineering

Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated …


Development Of Scaffold Architectures And Heterotypic Cell Systems For Hepatocyte Transplantation, Dalia Alzebdeh Jan 2015

Development Of Scaffold Architectures And Heterotypic Cell Systems For Hepatocyte Transplantation, Dalia Alzebdeh

Wayne State University Dissertations

In vitro assembly of functional liver tissue is needed to enable the transplantation of tissue-engineered livers. In addition, there is an increasing demand for in vitro models that replicate complex events occurring in the liver. However, tissue engineering of sizable implantable liver systems is currently limited by the difficulty of assembling three dimensional hepatocyte cultures of a useful size, while maintaining full cell viability, an issue which is closely related to the high metabolic rate of hepatocytes. In this study, we first compared two designs of highly porous chitosan-heparin scaffolds seeded with hepatocytes in dynamic perfusion bioreactor systems. The aim …


Multi-Platform Arabinoxylan Scaffolds As Potential Wound Dressing Materials, Donald C. Aduba Jr Jan 2015

Multi-Platform Arabinoxylan Scaffolds As Potential Wound Dressing Materials, Donald C. Aduba Jr

Theses and Dissertations

Biopolymers are becoming more attractive as advanced wound dressings because of their naturally derived origin, abundance, low cost and high compatibility with the wound environment. Arabinoxylan (AX) is a class of polysaccharide polymers derived from cereal grains that are primarily used in food products and cosmetic additives. Its application as a wound dressing material has yet to be realized. In this two-pronged project, arabinoxylan ferulate (AXF) was fabricated into electrospun fibers and gel foams to be evaluated as platforms for wound dressing materials. In the first study, AXF was electrospun with varying amounts of gelatin. In the second study, AXF …


Understanding The Role Of Colloidal Particles In Electroporation Mediated Delivery, Alisha Peterson Jan 2015

Understanding The Role Of Colloidal Particles In Electroporation Mediated Delivery, Alisha Peterson

USF Tampa Graduate Theses and Dissertations

Electroporation (EP) is a physical non-viral technique used to deliver therapeutic molecules across the cell membrane. During electroporation an external electric field is applied across a cell membrane and it causes pores to form. These pores then allow the surrounding media containing the therapeutics to diffuse across the membrane. This technique has been specifically studied as a promising gene and drug delivery system. Colloidal particles have also proven to be promising for a variety of biological applications including molecular delivery, imaging, and tumor ablation, due to their large surface area and tunable properties. In more recent years researchers have explored …


Biocorrosion Rate And Mechanism Of Metallic Magnesium In Model Arterial Environments, Patrick Bowen Jan 2015

Biocorrosion Rate And Mechanism Of Metallic Magnesium In Model Arterial Environments, Patrick Bowen

Dissertations, Master's Theses and Master's Reports

A new paradigm in biomedical engineering calls for biologically active implants that are absorbed by the body over time. One popular application for this concept is in the engineering of endovascular stents that are delivered concurrently with balloon angioplasty. These devices enable the injured vessels to remain patent during healing, but are not needed for more than a few months after the procedure. Early studies of iron- and magnesium-based stents have concluded that magnesium is a potentially suitable base material for such a device; alloys can achieve acceptable mechanical properties and do not seem to harm the artery during degradation. …


Peracetic Acid Sterilization Of Electrospun Polycaprolactone Scaffolds, Suyog Yoganarasimha Jan 2015

Peracetic Acid Sterilization Of Electrospun Polycaprolactone Scaffolds, Suyog Yoganarasimha

Theses and Dissertations

Sterilization of tissue engineered scaffolds is an important regulatory issue and is at the heart of patient safety. With the introduction of new biomaterials and micro/nano structured scaffolds, it is critical that the mode of sterilization preserve these built-in features. Conventional sterilization methods are not optimal for engineered polymeric systems and hence alternate systems need to be identified and validated. PCL is polyester with a low melting point (heat labile), susceptible to hydrolysis and is popular in tissue engineering. Electrospinning generates some nanoscale features within the scaffold, the integrity of which can be affected by sterilization method. Chapter 1 explores …


Monolithic Optofluidic Ring Resonator Lasers Created By Femtosecond Laser Nanofabrication, Hengky Chandrahalim, Qiushu Chen, Ali A. Said, Mark Dugan, Xudong Fan Jan 2015

Monolithic Optofluidic Ring Resonator Lasers Created By Femtosecond Laser Nanofabrication, Hengky Chandrahalim, Qiushu Chen, Ali A. Said, Mark Dugan, Xudong Fan

Faculty Publications

We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ/mm2. Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 104, which is limited by both solvent …


Systematic Study Of The Biological Effects Of Nitric Oxide (No) Using Innovative No Measurement And Delivery Systems, Weilue He Jan 2015

Systematic Study Of The Biological Effects Of Nitric Oxide (No) Using Innovative No Measurement And Delivery Systems, Weilue He

Dissertations, Master's Theses and Master's Reports

Nitric oxide (NO) is recognized as the most important small signaling molecule in the human body. An imbalance of NO is closely associated with many serious diseases such as neurological disorders, cardiovascular diseases, chronic inflammations and cancers. Herein two chemiluminescence-based devices (a real-time NO measurement device and a controllable NO delivery device) were developed to facilitate the NO quantitative study and obtain information for NO related drug design.

The first device used for real-time measuring NO(g) flux from living cells was developed and validated. The principle was to use a two-chamber design, with a cell culture chamber and a gaseous …