Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Understanding Control Of Metabolite Dynamics And Heterogeneity, Christopher John Hartline Aug 2022

Understanding Control Of Metabolite Dynamics And Heterogeneity, Christopher John Hartline

McKelvey School of Engineering Theses & Dissertations

Microbes live in complex and continually changing environments. Rapid shifts in nutrient availability are a common challenge for microbes, and cause changes in intracellular metabolite levels. Microbial response to dynamic environments requires coordination of multiple levels of cellular machinery including gene expression and metabolite concentrations. This coordination is achieved through metabolic control systems, which sense metabolite concentrations and direct cellular activity in response. Several reoccurring control architectures are found throughout diverse metabolic systems, which suggests underlying evolutionary advantages for using these control systems to coordinate metabolism. One common, yet understudied, control architecture is the positive feedback metabolite uptake loop, which …


Ligand- And Strain-Specific Control Of Microbial Communities, Austin Grant Rottinghaus Aug 2022

Ligand- And Strain-Specific Control Of Microbial Communities, Austin Grant Rottinghaus

McKelvey School of Engineering Theses & Dissertations

Microbes naturally coexist in complex, multi-strain communities that are valuable assets for their host. Commensal and probiotic microbes prevent pathogen colonization, reduce the frequency and severity of various ailments, provide essential nutrients, and offer various additional benefits. Understanding the dynamics of and tailoring microbial communities to provide additional beneficial functions is a primary focus of researchers in medicine and agriculture. To date, consortia have primarily been manipulated by supplementing the communities with microbes that were engineered in vitro or by introducing stimuli that alter the metabolism or composition of the community. This method has proven successful, with numerous microbes engineered …


Bio-Inspired Materials For Electrochemical Sensors, Matthew Joseph Hummel Jan 2021

Bio-Inspired Materials For Electrochemical Sensors, Matthew Joseph Hummel

Electronic Theses and Dissertations

Electrochemical biosensors are a rapidly growing research area that has greatly improved its specificity, accuracy, and precision in the detection of biomolecules in contemporary literature and industry alike. Typically, these systems exist in a three-electrode conformation with a working electrode functioning as the anode, a counter electrode functioning as the cathode, and a reference electrode allowing for the control of potential in the system. The method by which these sensors work is through the sharing of electrons via redox reactions with the target molecule and the working electrode or modifications on its surface. By exploiting the function of biomaterials that …


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …


Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery Jun 2019

Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery

Materials Engineering

Amyloid nanofibrils are natural materials capable of self-assembling into precise structures with tunable functionalities, while exhibiting excellent mechanical properties. In combination with highly conductive graphene oxide (GO), the 1-D amyloid nanofibrils and 2-D nanosheets of GO can produce a robust and bio-functional nanohybrid, hypothesized to exhibit multi-domain functional properties useful for enzyme sensing, water purification, drug delivery, and tissue scaffolding applications. Here, we examine the properties of an amyloid-graphene oxide nanohybrid film made with amyloids derived from hen egg white lysozymes in an attempt to explore the diverse toolbox of amyloid derivatives and establish ideal fabrication methods and formulations of …


Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh Aug 2018

Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh

LSU Doctoral Dissertations

Challenges in drug efficacy occur during the treatment of most types of cancer due to the heterogeneity of the tumor microenvironment. This has led to the development of personalized medicine. Due to the clinical success of the proteasome inhibitors Bortezomib and Carfilzomib in treatment of multiple myeloma, interest has shifted towards molecularly-targeted chemotherapeutics for ubiquitin-proteasome system (UPS). Deubiquitinating enzymes (DUBs) are an essential part of this pathway which have been found to promote Bortezomib resistance in multiple myeloma patients. Unfortunately, there is a lack of specific, high throughput biochemical assays to characterize DUB activity in patient samples before and after …


Fabricating Cost-Effective Nanostructures For Biomedical Applications, Erden Ertorer Sep 2013

Fabricating Cost-Effective Nanostructures For Biomedical Applications, Erden Ertorer

Electronic Thesis and Dissertation Repository

In this thesis we described inexpensive alternatives to fabricate nanostructures on planar substrates and provided example applications to discuss the efficiency of fabricated nanostructures.

The first method we described is forming large area systematically changing multi-shape nanoscale structures on a chip by laser interference lithography. We analyzed the fabricated structures at different substrate positions with respect to exposure time, exposure angle and associated light intensity profile. We presented experimental details related to the fabrication of symmetric and biaxial periodic nanostructures on photoresist, silicon surfaces, and ion-milled glass substrates. Behavior of osteoblasts and osteoclasts on the nanostructures was investigated. These results …


Real-Time Analysis Of Brain Tumor Cell Dynamics: Novel Thermoelectric Detection Of L-Glutamate And Cell Metabolism Using Microfluidics, Siva Mahesh Tangutooru Oct 2012

Real-Time Analysis Of Brain Tumor Cell Dynamics: Novel Thermoelectric Detection Of L-Glutamate And Cell Metabolism Using Microfluidics, Siva Mahesh Tangutooru

Doctoral Dissertations

This study describes the design, fabrication and applications of a novel thermoelectric microfluidic bio-sensor. The bio-sensor is used for real time detection of the L-glutamate (L-glu) dynamics and metabolism for brain tumor cells immobilized in a microfluidic device. The microfluidic device is fabricated using a polymer/glass laminating technique (Xurography). An antimony-bismuth thin-film thermopile (primary sensing element) is integrated to the microfluidic device. The brain tumor cells are immobilized over the thermopile covering measuring and reference junctions of the thermopile using a poly-l-lysine coating layer. L-glutamate oxidase (L-GLOD) is immobilized over the measuring junctions of the thermopile prior to the immobilization …