Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 139

Full-Text Articles in Biomedical Engineering and Bioengineering

Molecular Dynamics Simulations Of Ion Transport Through Electrically Stressed Biological Membranes, Federica Castellani Jul 2021

Molecular Dynamics Simulations Of Ion Transport Through Electrically Stressed Biological Membranes, Federica Castellani

Biomedical Engineering Theses & Dissertations

The cell membrane is a selectively permeable barrier that controls the transport of ions, molecules, and other materials into and out of a cell. The manipulation of the cell membrane permeability is the basis for several biotechnological and biomedical applications, including electroporation. Electroporation (or electropermeabilization) occurs when the application of an external electric pulse causes water intrusion into the membrane interior and the formation of conductive transmembrane electropores. These electropores allow drugs, genetic material, and other normally impermeant molecules to enter a cell. Despite years of study, the complex mechanisms underlying this process are still not well understood. Molecular dynamics …


Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango Jun 2021

Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango

Doctoral Dissertations

Protein drugs, including antibodies, are rapidly emerging as the top-selling pharmaceuticals worldwide owing to their unparalleled specificity and biocompatibility. However, none of the currently-approved protein therapeutics act intracellularly, despite the vast majority of potential drug targets residing within the cell. This is due mainly to the paramount challenge of transporting hydrophilic macromolecular cargoes across the plasma membrane. As such, effective protein carriers are essential for the advancement of modern medicine. Despite significant advances, many challenges still plague protein delivery. Following membrane transduction, delivery vectors must preserve the structure and activity of their cargoes while transporting them to the correct subcellular …


Computational Algorithms For Predicting Membrane Protein Assembly From Angstrom To Micron Scale, Nandhini Rajagopal May 2021

Computational Algorithms For Predicting Membrane Protein Assembly From Angstrom To Micron Scale, Nandhini Rajagopal

Dissertations - ALL

Biological barriers in the human body are one of the most crucial interfaces perfected through evolution for diverse and unique functions. Of the wide range of barriers, the paracellular protein interfaces of epithelial and endothelial cells called tight junctions with high molecular specificities are vital for homeostasis and to maintain proper health. While the breakdown of these barriers is associated with serious pathological consequences, their intact presence also poses a challenge to effective delivery of therapeutic drugs. Complimenting a rigorous combination of in vitro and in vivo approaches to establishing the fundamental biological construct, in addition to elucidating pathological implications …


Biomedical Applications And Syntheses Of Selected Anthraquinone Dyes, Richard Sirard Apr 2021

Biomedical Applications And Syntheses Of Selected Anthraquinone Dyes, Richard Sirard

Senior Honors Theses

Anthraquinones are aromatic organic compounds that have multiple applications in the biomedical field. Some anthraquinone-based compounds are used as fluorophores to contrast cell nuclei while others act as chemotherapeutic agents. However, there are not many fluorescent anthraquinone cell stains currently available. In this study, commercially available anthraquinone dyes, in addition to other dye families and compounds, were reviewed for their unique properties, advantages, and drawbacks. The development and characterization of three novel anthraquinone fluorophores revealed promising photophysical characteristics, like large Stokes shifts. One of the compounds, RBS3, was chosen for fixed and live cell staining and exhibited desirable biomedical properties. …


An Investigation Of Cross-Links On Crystallization And Degradation In A Novel, Photocross-Linkable Poly (Lactic Acid) System, Nicholas Baksh Feb 2021

An Investigation Of Cross-Links On Crystallization And Degradation In A Novel, Photocross-Linkable Poly (Lactic Acid) System, Nicholas Baksh

USF Tampa Graduate Theses and Dissertations

Polymeric molecular structure consists of repeating units bonded together. Mechanicalproperties can be altered without affecting chemical makeup by altering the number of these units. Small molecules can be introduced and/or polymers can be modified to form bonds between molecular chains. Cross-linking, as this is called, also introduces mechanical variation with minimal effects on chemical composition. Lastly, polymer chains reorient themselves in response to intermolecular forces. This temperature dependent response is known as crystallization. Although chemistry is unaltered, mechanical properties can depend highly on the percent of the sample that is crystallized.

Cross-linking is known to enhance the mechanical properties of …


Computational Modelling Enables Robust Multidimensional Nanoscopy, Matthew D. Lew Feb 2021

Computational Modelling Enables Robust Multidimensional Nanoscopy, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

The following sections are included:

  • Present State of Computational Modelling in Fluorescence Nanoscopy

  • Recent Contributions to Computational Modelling in Fluorescence Nanoscopy

  • Outlook on Computational Modelling in Fluorescence Nanoscopy

  • Acknowledgments

  • References


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence Jan 2021

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Fluid Model Of Plasma-Liquid Interaction: The Effect Of Interfacial Boundary Conditions And Henry's Law Constants, Yifan Liu, Dingxin Liu, Jishen Zhang, Bowen Sun, Santu Luo, Hao Zhang, Li Guo, Mingzhe Rong, Michael G. Kong Jan 2021

Fluid Model Of Plasma-Liquid Interaction: The Effect Of Interfacial Boundary Conditions And Henry's Law Constants, Yifan Liu, Dingxin Liu, Jishen Zhang, Bowen Sun, Santu Luo, Hao Zhang, Li Guo, Mingzhe Rong, Michael G. Kong

Bioelectrics Publications

Plasma–liquid interaction is a critical area of plasma science, mainly because much remains unknown about the physicochemical processes occurring at the plasma–liquid interface. Besides a lot of experimental studies toward the interaction, a few fluid models have also been reported in recent years. However, the interfacial boundary conditions in the models are different and the Henry's law constants therein are uncertain; hence, the accuracy and robustness of the simulation results are doubtable. In view of this, three 1D fluid models are developed for the interaction between a plasma jet and deionized water, each of which has a unique interfacial boundary …


Discharge Mode Transition In He/Ar Atmospheric Pressure Plasma Jet And Its Inactivation Effect Against Tumor Cells In Vitro, Bolun Pang, Zhijie Liu, Sitao Wang, Yuting Gao, Huaiyan Zhang, Feng Zhang, Xiamin Tantai, Dehui Xu, Dingxin Liu, Michael G. Kong Jan 2021

Discharge Mode Transition In He/Ar Atmospheric Pressure Plasma Jet And Its Inactivation Effect Against Tumor Cells In Vitro, Bolun Pang, Zhijie Liu, Sitao Wang, Yuting Gao, Huaiyan Zhang, Feng Zhang, Xiamin Tantai, Dehui Xu, Dingxin Liu, Michael G. Kong

Bioelectrics Publications

Discharge characteristic comparisons between He and Ar plasma jets have been extensively reported, but is rarely reported for the comprehensive study of discharge mode transition from He jet to Ar jet, especially its induced liquid chemistry and biological effect. In this paper, we investigate the plasma jet mode transformation by varying the Ar contents in the He/Ar mixing working gas, particularly focusing on the effect of liquid chemistry of plasma activated water (PAW) and the corresponding inactivation effect against tumor cells in vitro. The mode transition process from He jet to Ar jet is characterized by the discharge images, …


Oxygen Harvesting From Carbon Dioxide: Simultaneous Epoxidation And Co Formation, Han Xu, Muhammad Shaban, Sui Wang, Anas Alkayal, Dingxin Liu, Michael G. Kong, Felix Plasser, Benjamin R. Buckley, Felipe Iza Jan 2021

Oxygen Harvesting From Carbon Dioxide: Simultaneous Epoxidation And Co Formation, Han Xu, Muhammad Shaban, Sui Wang, Anas Alkayal, Dingxin Liu, Michael G. Kong, Felix Plasser, Benjamin R. Buckley, Felipe Iza

Bioelectrics Publications

Due to increasing concentrations in the atmosphere, carbon dioxide has, in recent times, been targeted for utilisation (Carbon Capture Utilisation and Storage, CCUS). In particular, the production of CO from CO2 has been an area of intense interest, particularly since the CO can be utilized in Fischer–Tropsch synthesis. Herein we report that CO2 can also be used as a source of atomic oxygen that is efficiently harvested and used as a waste-free terminal oxidant for the oxidation of alkenes to epoxides. Simultaneously, the process yields CO. Utilization of the atomic oxygen does not only generate a valuable product, …


Photodynamic Therapy Of Inorganic Complexes For The Treatment Of Cancer, Chloe B. Smith, Lindsay C. Days, Duaa R. Alajroush, Khadija Faye, Yara Khodour, Stephen J. Beebe, Alvin Holder Jan 2021

Photodynamic Therapy Of Inorganic Complexes For The Treatment Of Cancer, Chloe B. Smith, Lindsay C. Days, Duaa R. Alajroush, Khadija Faye, Yara Khodour, Stephen J. Beebe, Alvin Holder

Chemistry & Biochemistry Faculty Publications

Photodynamic therapy (PDT) is a medicinal tool that uses a photosensitiser and a light source to treat several conditions, including cancer. PDT uses reactive oxygen species (ROS) such as cytotoxic singlet oxygen 1O2 to induce cell death in cancer cells. Chemotherapy has historically utilized the cytotoxic effects of many metals, especially transition-metal complexes. However, chemotherapy is a systemic treatment so all cells in a patient's body are exposed to the same cytotoxic effects. Transition metal complexes have also shown high cytotoxicity as PDT agents. PDT is a potential localized method for treating several cancer types by using inorganic …


Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta Dec 2020

Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta

Doctoral Dissertations

Biologic drugs have gained enormous research attention in recent years as reflected by the development of multiple candidates to the clinical pipelines and an increased percentage of FDA approval. This is reasoned by the fact that biologics have been proven to deliver more predictive and promising benefits for many hard-to-cure diseases by ‘drugging the undruggable’ targets. However, the challenges associated with biologic drug development are multi-fold, viz, poor encapsulation efficacy, systemic instability, low cellular internalization and endosomal escape capability. Thus, it is essential to develop new molecular strategies that can not only address the associated drug delivery challenges, but also …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew Sep 2020

Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve …


Near Simultaneous Laser Scanning Confocal And Atomic Force Microscopy (Conpokal) On Live Cells, Joree N. Sandin, Surya P. Aryal, Thomas E. Wilkop, Christopher I. Richards, Martha E. Grady Aug 2020

Near Simultaneous Laser Scanning Confocal And Atomic Force Microscopy (Conpokal) On Live Cells, Joree N. Sandin, Surya P. Aryal, Thomas E. Wilkop, Christopher I. Richards, Martha E. Grady

Physiology Faculty Publications

Techniques available for micro- and nano-scale mechanical characterization have exploded in the last few decades. From further development of the scanning and transmission electron microscope, to the invention of atomic force microscopy, and advances in fluorescent imaging, there have been substantial gains in technologies that enable the study of small materials. Conpokal is a portmanteau that combines confocal microscopy with atomic force microscopy (AFM), where a probe "pokes" the surface. Although each technique is extremely effective for the qualitative and/or quantitative image collection on their own, Conpokal provides the capability to test with blended fluorescence imaging and mechanical characterization. Designed …


Optimized Xanthene-Based Probes For Pancreatic Cancer Imaging, Ian Ruramai Munhenzva May 2020

Optimized Xanthene-Based Probes For Pancreatic Cancer Imaging, Ian Ruramai Munhenzva

Dissertations and Theses

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest human malignancies with an extremely poor 5-year survival rate of below 5%. Surgical resection is the most effective treatment of choice because chemotherapy and radiation therapy do not improve life expectancy. Residual tumor after PDAC surgery is common due to a lack of PDAC targeted intraoperative contrast agents to confirm clear margins.

Fluorescence imaging has the potential to improve surgery outcome and PDAC patients' survival rate via the use of highly PDAC-specific molecular probes to facilitate tumor identification. This thesis describes the application of a focused library of benzoxanthene fluorophores for …


Dose Response Effect Of Mycobacterium Smegmatis-Derived Lipomannan In Raw 264.7 Murine Macrophages, Cassandra Robertson May 2020

Dose Response Effect Of Mycobacterium Smegmatis-Derived Lipomannan In Raw 264.7 Murine Macrophages, Cassandra Robertson

Undergraduate Theses and Capstone Projects

Tuberculosis is a debilitating respiratory disease caused by the bacterial species Mycobacterium tuberculosis, which acts by infecting the host’s macrophages and evading their immune responses. The purpose of the study was to determine if RAW 264.7 murine macrophage activity could be facilitated and intensified by stimulation with LAM from M. smegmatis. Stimulation with bacterial LAM, and lipopolysaccharide (LPS) as a positive control, yields functional endpoints: nitric oxide (NO) production measured by nitrites (NO2) in the culture supernatant and expression of proteins, such as tumor necrosis factor-α and inducible nitric oxide synthase (iNOS). RAW 264.7 cells were stimulated dose-responsively with LAM …


Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov May 2020

Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

The principal bioeffect of the nanosecond pulsed electric field (nsPEF) is a lasting cell membrane permeabilization, which is often attributed to the formation of nanometer-sized pores. Such pores may be too small for detection by the uptake of fluorescent dyes. We tested if Ca2+, Cd2+, Zn2+, and Ba2+ ions can be used as nanoporation markers. Time-lapse imaging was performed in CHO, BPAE, and HEK cells loaded with Fluo-4, Calbryte, or Fluo-8 dyes. Ca2+ and Ba2+ did not change fluorescence in intact cells, whereas their entry after nsPEF increased fluorescence within <1 ms. The threshold for one 300-ns pulse was at 1.5–2 kV/cm, much lower than >7 …


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …


Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan Aug 2019

Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan

Graduate Theses and Dissertations

In this work, a novel microfluidic pumping approach, redox-magnetohydrodynamics (R-MHD) has improved by materials and device optimization to use in lab-on-a-chip applications. In R-MHD, magnetic flux (B) and ionic current density (j) interacts to generate body force (FB) in between active electrodes, according to the equation FB = j×B. This unique fluid pumping approach is scalable, tunable, generates flat flow profile, and does not require any channels or valves. Pumping performance, such as speed scales with the ionic current density (j) and duration depends on the total charge (Q). The ionic current density (j) results from the conversion of electronic …


Fluoride Removal From Water Using A 3d Printed Calcium Carbonate Filter, Sophia Bakar, David Kahler, Benjamin S. Goldschmidt Apr 2019

Fluoride Removal From Water Using A 3d Printed Calcium Carbonate Filter, Sophia Bakar, David Kahler, Benjamin S. Goldschmidt

Undergraduate Research and Scholarship Symposium

Groundwater containing high concentrations of fluoride is the most common source of drinking water in rural areas in parts of east Africa, India, and China. The elevated levels of fluoride cause skeletal and dental fluorosis, which is the weakening and decay of bone structures due to the leeching of calcium from the body as calcium and fluoride bond by the process of adsorption. Over 150 million people are suffering from some form of fluorosis due to the consumption of groundwater. Calcium carbonate has been demonstrated to influence fluoride removal in several forms. To make fluoride removal a cost-effective and user-friendly …


Deswelling Induced Morphological Changes In Dual Ph And Temperature Responsive Ultra-Low Crosslinked Poly (N-Isopropyl Acrylamide)-Co-Acrylic Acid Microgels, Molla R. Islam, Maddie Tumbarello, L. Andrew Lyon Mar 2019

Deswelling Induced Morphological Changes In Dual Ph And Temperature Responsive Ultra-Low Crosslinked Poly (N-Isopropyl Acrylamide)-Co-Acrylic Acid Microgels, Molla R. Islam, Maddie Tumbarello, L. Andrew Lyon

Engineering Faculty Articles and Research

Poly(N-isopropylacrylamide) microgels prepared without exogenous cross-linker are extremely “soft” as a result of their very low cross-linking density, with network connectivity arising only from the self-crosslinking of pNIPAm chains. As a result of this extreme softness, our group and others have taken interest in using these materials in a variety of bioengineering applications, while also pursuing studies of their fundamental properties. Here, we report deswelling triggered structural changes in poly(N-isopropylacrylamide-co-acrylic acid) (ULC10AAc) microgels prepared by precipitation polymerization. Dynamic light scattering suggests that the deswelling of these particles not only depends on the collapse of …


Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince Feb 2019

Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince

Electronic Thesis and Dissertation Repository

Hydrogels are 3-dimensional crosslinked polymer networks that can absorb significant amounts of water. The physical properties associated with hydrogels affords them resemblance to biological tissues making them good candidates for biomedical applications. Many pharmaceuticals, specifically non-steroidal anti-inflammatory drugs (NSAIDs), have poor aqueous solubility, which limits their bioavailability and efficacy. People suffering from chronic osteoarthritis (OA) are required to frequently take large doses to mitigate pain, which can lead to serious side effects. Hydrogels are good strategies to deliver NSAIDs via articular injection because they can form solid gels in situ. This thesis describes the synthesis, formulation, mechanical testing, in …


Spatial Fingerprinting Of Biogenic And Anthropogenic Volatile Organic Compounds In An Arid Unsaturated Zone, Christopher T. Green, Wentai Luo, Christopher H. Conaway, Karl B. Haase, Ronald J. Baker Jan 2019

Spatial Fingerprinting Of Biogenic And Anthropogenic Volatile Organic Compounds In An Arid Unsaturated Zone, Christopher T. Green, Wentai Luo, Christopher H. Conaway, Karl B. Haase, Ronald J. Baker

Chemistry Faculty Publications and Presentations

Subsurface volatile organic compounds (VOCs) can pose risks to human and environmental health and mediate biological processes. Volatile organic compounds have both anthropogenic and biogenic origins, but the relative importance of these sources has not been explored in subsurface environments. This study synthesized 17 yr of VOC data from the Amargosa Desert Research Site in Nevada with the goal of improving understanding of spatial and temporal variations that distinguish sources of VOCs from a landfill and from ambient sources including biogenic VOCs (bVOCs). Gas samples were collected from 1999 to 2016 from an array of shallow sample points (0.5- and …


Kcnq1/Kcne1 Interaction In The Cardiac Iks Channel And Its Physiological Consequences, Jiajing Xu Dec 2018

Kcnq1/Kcne1 Interaction In The Cardiac Iks Channel And Its Physiological Consequences, Jiajing Xu

McKelvey School of Engineering Theses & Dissertations

Dynamic conformational changes of ion channel proteins during activation gating determine their function as carriers of current. The relationship between these molecular movements and channel function over the physiological timescale of the action potential (AP) has not been fully established due to limitations of existing techniques. We constructed a library of possible cardiac IKs protein conformations and applied a combination of protein segmentation and energy linearization to study this relationship computationally. Simulations reproduced the effects of the beta-subunit (KCNE1) on the alpha-subunit (KCNQ1) dynamics and function, observed in experiments. Mechanistically, KCNE1 increased the probability of “visiting” conducting pore conformations on …


Radiolabeled Nanohydroxyapatite As A Platform For The Development Of New Pet Imaging Agents, Stacy Lee Queern Dec 2018

Radiolabeled Nanohydroxyapatite As A Platform For The Development Of New Pet Imaging Agents, Stacy Lee Queern

Arts & Sciences Electronic Theses and Dissertations

Positron emission tomography (PET) imaging utilizes drugs labeled with positron emitters to target and evaluate different biological processes occurring in the body. Tailoring medicine to the individual allows for higher quality of care with better diagnosis and treatment and is a key purpose for advancing research into developing new platforms for PET imaging agents. A PET nuclide of high interest for the development of these agents is 89Zr. This can be attributed to the long half-life of 3.27 days and low positron energy of 89Zr.

In this work, we developed a production method for 89Zr using Y sputtered coins that …


Assessing Biofiltration Without Ozonation For Removal Of Trihalomethane Precursors In Drinking Water At The Beaver Water District Drinking Water Treatment Plant, Sana Ajaz Dec 2018

Assessing Biofiltration Without Ozonation For Removal Of Trihalomethane Precursors In Drinking Water At The Beaver Water District Drinking Water Treatment Plant, Sana Ajaz

Graduate Theses and Dissertations

Biofiltration without pre-ozonation has the capability to remove natural organic matter (NOM) fractions that serve as precursors of disinfection byproducts (DBPs), which include the four regulated trihalomethanes (THMs) and dichloroacetonitrile (DCAN). Rapid small-scale column tests (RSSCTs) and Pilot Plant filters operated at empty-bed contact times (EBCTs) of 4, 8, and 16 minutes were used to evaluate the performance of nutrient-amended (free ammonia and phosphorus) biofiltration for THM and DCAN precursor removal, as measured using formation potential (FP) tests. NOM surrogates – which include dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA254) and fluorescence-PARAFAC components – were measured weekly throughout the …


Piezoresponse, Mechanical, And Electrical Characteristics Of Synthetic Spider Silk Nanofibers, Nader Shehata, Ishac Kandas, Ibrahim Hassounah, Patrik Sobolčiak, Igor Krupa, Miroslav Mrlik, Anton Popelka, Jesse Steadman, Randolph V. Lewis Aug 2018

Piezoresponse, Mechanical, And Electrical Characteristics Of Synthetic Spider Silk Nanofibers, Nader Shehata, Ishac Kandas, Ibrahim Hassounah, Patrik Sobolčiak, Igor Krupa, Miroslav Mrlik, Anton Popelka, Jesse Steadman, Randolph V. Lewis

Biology Faculty Publications

This work presents electrospun nanofibers from synthetic spider silk protein, and their application as both a mechanical vibration and humidity sensor. Spider silk solution was synthesized from minor ampullate silk protein (MaSp) and then electrospun into nanofibers with a mean diameter of less than 100 nm. Then, mechanical vibrations were detected through piezoelectric characteristics analysis using a piezo force microscope and a dynamic mechanical analyzer with a voltage probe. The piezoelectric coefficient (d33) was determined to be 3.62 pC/N. During humidity sensing, both mechanical and electric resistance properties of spider silk nanofibers were evaluated at varying high-level …


Polymeric Peptide Mimics For Protein Delivery, Coralie Backlund Jul 2018

Polymeric Peptide Mimics For Protein Delivery, Coralie Backlund

Doctoral Dissertations

The plasma membrane is a major obstacle in the development and use of biomacromolecules for intracellular applications. Consequently, proteins with intracellular targets represent an enormous, yet under studied avenue for therapeutics. Extended research has aimed at facilitating intracellular delivery of exogenous proteins using protein transduction domains (PTDs), which allow transport of bioactive molecules into cells. Synthetic polymers, inspired by PTDs, provide a well-controlled platform to vary molecular architecture for structure activity relationship studies. Specifically, this thesis focuses on the use of ring-opening metathesis, a facile and efficient polymerization technique, through which we can vary structural parameters to optimize delivery of …


Super‐Resolution Imaging Of Amyloid Structures Over Extended Times By Using Transient Binding Of Single Thioflavin T Molecules, Kevin Spehar, Tianben Ding, Yuanzi Sun, Niraja Kedia, Jin Lu, George R. Nahass, Matthew D. Lew, Jan Bieschke Jun 2018

Super‐Resolution Imaging Of Amyloid Structures Over Extended Times By Using Transient Binding Of Single Thioflavin T Molecules, Kevin Spehar, Tianben Ding, Yuanzi Sun, Niraja Kedia, Jin Lu, George R. Nahass, Matthew D. Lew, Jan Bieschke

Electrical & Systems Engineering Publications and Presentations

Oligomeric amyloid structures are crucial therapeutic targets in Alzheimer's and other amyloid diseases. However, these oligomers are too small to be resolved by standard light microscopy. We have developed a simple and versatile tool to image amyloid structures by using thioflavin T without the need for covalent labeling or immunostaining. The dynamic binding of single dye molecules generates photon bursts that are used for fluorophore localization on a nanometer scale. Thus, photobleaching cannot degrade image quality, allowing for extended observation times. Super‐resolution transient amyloid binding microscopy promises to directly image native amyloid by using standard probes and record amyloid dynamics …