Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Effect Of High-Energy Ball Milling On The Formation And Micro Structural Features Of Carbonated Chlorapatite Nanopowders Apr 2015

Effect Of High-Energy Ball Milling On The Formation And Micro Structural Features Of Carbonated Chlorapatite Nanopowders

Faculty of Engineering University of Malaya

Carbonated chlorapatite nanopowders (n-CCAp) were synthesized by mechanochemical process from calcite (CaCO3), phosphorus pentoxide (P2O5), and calcium chloride (CaCl2) as raw materials. Results demonstrated that the formation of n-CCAp was influenced strongly by the milling time. At the beginning of milling (up to 15 min), CaCO3 and CaCl2 were the dominant phases, while P2O5 disappeared entirely due to its very high deliquescent nature. With increasing the milling time to 600 min, the progressive mechanochemical reaction was completed which resulted in the formation of nanostructured carbonated chlorapatite. According to the X-ray diffraction data, crystallite size of the product decreased from 24 ...


Nanoparticles For Stem-Cell Engineering, Esmaiel Jabbari Mar 2015

Nanoparticles For Stem-Cell Engineering, Esmaiel Jabbari

Esmaiel Jabbari

No abstract provided.


Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke Jan 2015

Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke

Theses and Dissertations--Chemical and Materials Engineering

Cancer is designated as the leading cause of mortality worldwide and lung cancer is responsible for nearly 30% of all cancer related deaths. Over the last few decades mortality rates have only marginally increased and rates of recurrence remain high. These factors, among others, suggest the need for more innovative treatment modalities in lung cancer therapy. Targeted pulmonary delivery is well established for treating pulmonary diseases such as asthma and provides a promising platform for lung cancer therapy. Increasing local deposition of anticancer agents (ACAs) and reducing systemic exposure of these toxic moieties could lead to better therapeutic outcomes and ...