Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Effect Of High-Energy Ball Milling On The Formation And Micro Structural Features Of Carbonated Chlorapatite Nanopowders Apr 2015

Effect Of High-Energy Ball Milling On The Formation And Micro Structural Features Of Carbonated Chlorapatite Nanopowders

Faculty of Engineering University of Malaya

Carbonated chlorapatite nanopowders (n-CCAp) were synthesized by mechanochemical process from calcite (CaCO3), phosphorus pentoxide (P2O5), and calcium chloride (CaCl2) as raw materials. Results demonstrated that the formation of n-CCAp was influenced strongly by the milling time. At the beginning of milling (up to 15 min), CaCO3 and CaCl2 were the dominant phases, while P2O5 disappeared entirely due to its very high deliquescent nature. With increasing the milling time to 600 min, the progressive mechanochemical reaction was completed which resulted in the formation of nanostructured carbonated chlorapatite. According to the X-ray diffraction data, crystallite size of the product decreased from 24 ...


Nanoparticles For Stem-Cell Engineering, Esmaiel Jabbari Mar 2015

Nanoparticles For Stem-Cell Engineering, Esmaiel Jabbari

Esmaiel Jabbari

No abstract provided.


Selective Deposition Of Metal Nanoparticles Inside Or Outside Multiwalled Carbon Nanotubes, Jean-Philippe Tessonnier, Ovidiu Ersen, Gisela Weinberg, Cuong Pham-Huu, Dang Sheng Su, Robert Schlogl Jan 2009

Selective Deposition Of Metal Nanoparticles Inside Or Outside Multiwalled Carbon Nanotubes, Jean-Philippe Tessonnier, Ovidiu Ersen, Gisela Weinberg, Cuong Pham-Huu, Dang Sheng Su, Robert Schlogl

Jean-Philippe Tessonnier

A general method is described for the deposition of metal nanoparticles selectively either inside or outside of carbon nanotubes (CNTs). The method is based on the difference in the interface energies of organic and aqueous solutions with the CNT surface. Because of their lipophilic character, the organic solvent better wets the surface of the nanotubes compared to water and penetrates into the inner volume. The precise control of the volume of each phase allows filling the CNT with the organic phase and covering its outer surface with the aqueous one. Hence, metal nanoparticles can be put with high selectivity either ...