Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Ph-Sensitive Oxygen Release Microspheres To Enhance Cell Survival In Ischemic Condition, Zhongting Liu Dec 2019

Ph-Sensitive Oxygen Release Microspheres To Enhance Cell Survival In Ischemic Condition, Zhongting Liu

McKelvey School of Engineering Theses & Dissertations

Ischemic diseases such as myocardial infarction, stroke and limb ischemia are severe cardiovascular diseases with high rate of death and millions of people suffered from these diseases. Under ischemic environment, cells die due to deficient supply of nutrient and oxygen. To regenerate ischemic tissues, stem cell therapy is a promising approach because stem cells can differentiate into cells necessary for the regeneration. However, stem cell therapy has limitations. For example, few cells can survive under harsh ischemic environment. To enhance stem cells survival, implantation of oxygen release microspheres to sustained supply cells with oxygen represents an effective strategy. Previously, our …


Investigating Cyanobacteria Metabolism And Channeling-Based Regulations Via Isotopic Nonstationary Labeling And Metabolomic Analyses, Mary Helen Abernathy Dec 2018

Investigating Cyanobacteria Metabolism And Channeling-Based Regulations Via Isotopic Nonstationary Labeling And Metabolomic Analyses, Mary Helen Abernathy

McKelvey School of Engineering Theses & Dissertations

Cyanobacteria have the potential to be low-cost and sustainable cell factories for bio-products; however, many challenges face cyanobacteria as biorefineries. This dissertation seeks to advance non-model photosynthetic organisms for biotechnology applications by characterizing central carbon metabolism and its regulations. Cyanobacteria phenotypes for bio-production are examined and their intracellular metabolism is quantified. Using isotopic labeling experiments, phenotypic relationships between biomass composition, central carbon fluxes, and metabolite pool sizes are investigated. Metabolic analyses of cyanobacteria led to new investigations of flux regulation mechanisms via protein spatial organizations or metabolite channeling. Metabolite channeling is further explored as a hypothesis to explain enigmatic labeling …


Engineering Robust And Programmable Biological Systems, Tatenda Shopera Aug 2018

Engineering Robust And Programmable Biological Systems, Tatenda Shopera

McKelvey School of Engineering Theses & Dissertations

The ability to engineer programmable biological systems using complex artificial gene networks has great potential to unlock important innovative solutions to many biotechnological challenges. While cells have been engineered to implement complex information processing algorithms and to produce food, materials, and pharmaceuticals, many innovative applications are yet to be realized due to our poor understanding of how robust, reliable, and predictable artificial gene circuits are built. In this work, we demonstrate that robust complex cellular behaviors (e.g., bistability and gene expression dynamics) can be achieved by engineering gene regulatory architecture and increasing the complexity of genetic networks. We further demonstrate …


Designing Metabolite Biosensors And Engineering Genetic Circuits To Regulate Metabolic Pathways, Di Liu Aug 2017

Designing Metabolite Biosensors And Engineering Genetic Circuits To Regulate Metabolic Pathways, Di Liu

McKelvey School of Engineering Theses & Dissertations

Microbial production of chemicals has provided an attractive alternative to chemical synthesis. A key to make this technology economically viable is to improve titers, productivities, and strain robustness. However, pathway productivities and yields are often limited by metabolic imbalances that inhibit cell growth and chemical production. In contrast, natural metabolic pathways are dynamically regulated according to cellular metabolic status. Dynamic regulation allows cells to adjust metabolite concentrations to optimal levels and avoid wasting carbon and energy. Inspired by nature, synthetic regulatory circuits have shown great promise in improving titers and productivities, because they can balance the metabolism by dynamically adjusting …