Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Lipids Affect The Diffusion Of Estradiol In Osteonal Bone, Nicholas Anthony Cimino Dec 2022

Lipids Affect The Diffusion Of Estradiol In Osteonal Bone, Nicholas Anthony Cimino

ETD Archive

In healthy osteonal bone, embedded osteocytes form an intercellular communication network through overlapping cell membrane extensions, possibly defining an overlooked and clinically relevant lipid-mediated transport pathway for nonpolar molecules. Previous techniques evaluating solute transport in cortical bone limit tissue analysis to microscale areas (less than 1 mm2) using tracers and assumptions that diminish clinical relevance, presenting the need for an improved method to evaluate solute diffusion in macroscale areas (greater than 1 mm2) of osteonal bone. A new diffusion system - constructed of glass and polytetrafluoroethylene - was designed and validated for this purpose, exhibiting minimal adsorption of solutes and …


Measurement Of Red Blood Cell Oxygenation State By Magnetophoresis, Nina A. Smith Jan 2019

Measurement Of Red Blood Cell Oxygenation State By Magnetophoresis, Nina A. Smith

ETD Archive

Magnetophoresis of red blood cells (RBCs) at varying partial pressures of oxygen (pO2) is hypothesized to rejuvenate stored blood to be utilized beyond the FDA regulated 42-day storage time. Magnetophoresis is a particle or cells motion induced by an applied magnetic field in a viscous media. The average magnetophoretic mobility of an oxygenated RBC is -0.126x10-6 mm3-s/kg, and a deoxygenated RBC is 3.66x10-6 mm3-s/kg, presenting magnetophoresis as a resource for RBC rejuvenation in hopes of storing it longer than 42 days. The main objective of this paper was to determine if controlling the pO2 within an RBC suspension, can singly- …


High-Throughput Metabolism-Induced Toxicity Assays On A 384-Pillar Plate, Sooyeion Kang Jan 2018

High-Throughput Metabolism-Induced Toxicity Assays On A 384-Pillar Plate, Sooyeion Kang

ETD Archive

The U.S Environmental Protection Agency (EPA) launched the Transform Tox Testing Challenge in 2016 with the goal of developing practical methods that can be integrated into conventional high-throughput screening (HTS) assays to better predict the toxicity of parent compounds and their metabolites in vivo. In response to this need and to retrofit existing HTS assays for assessing metabolism-induced toxicity of compounds, we have developed a 384-pillar plate that is complementary to traditional 384-well plates and ideally suited for culturing human cells in three dimensions (3D) at a microscale. Briefly, human embryonic kidney (HEK) 293 cells in a mixture of alginate …


Modeling Liver Diseases Using Hepatic Cell Microarrays, Alexander David Roth Jan 2018

Modeling Liver Diseases Using Hepatic Cell Microarrays, Alexander David Roth

ETD Archive

Hepatocellular carcinoma (HCC) is an invasive and aggressive cancer of the liver that arises due to chronic cirrhosis. Research into understanding HCC has focused on two-dimensional (2D) and three-dimensional (3D) technologies to simulate the liver microenvironment and use animal models to model how HCC affects the rest of the body. 3D hydrogel models are desired because they can mimic the transport behavior observed in vivo by structurally mimicking the extracellular matrix (ECM) without the ethical concerns of animal models. However, hydrogels can be toxic to cells and require optimal procedures for appropriate handling. In this study, we created 3D models …