Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Build Your Own Body Mod: Empowerment Through Prototyping And Design, Anaiss Arreola, Katherine R. Ganim Sep 2021

Build Your Own Body Mod: Empowerment Through Prototyping And Design, Anaiss Arreola, Katherine R. Ganim

Journal of Science Education for Students with Disabilities

When you don’t have a hand, what could you have instead? This article introduces the impact of inviting youth with disabilities to learn tools and technology to design their own solutions and advocate for their own future. This approach to programming is rooted in a mindset of designing WITH, not FOR. Not only are design outcomes improved when users are incorporated into the process, but this approach has been shown to improve confidence in creating one’s own solutions. These programs include hands-on “design-your-own-body-mod” workshops, as well as a budding inclusive design consultancy led by youth with disabilities. Through this programming, …


The Design And Development Of A Device To Assist In Boosting Patients, Taylor A. Rieckhoff Dec 2019

The Design And Development Of A Device To Assist In Boosting Patients, Taylor A. Rieckhoff

Masters Theses

A common task a nurse is required to perform is called boosting patients. Boosting a patient is defined as lifting or sliding a patient back up in the bed after having slid down (Mannheim, Zieve, & Conaway, 2017). The current method for boosting patients involves a minimum of two personnel and an 11-step process. The 11-step process requires the person to manually lift and pull the patient using an existing half sheet on the bed (Mannheim, Zieve, & Conaway, 2017). Patients who cannot move or support themselves are moved every two to six hours or upon request (Bihn, Rieckhoff, Burkman, …


The Theia Soteria: Alternative Design For Safer Initial Entry During Laparoscopic Procedures, Kayla Dubois, Patrick Ryan, Madelyn Joanis Jun 2019

The Theia Soteria: Alternative Design For Safer Initial Entry During Laparoscopic Procedures, Kayla Dubois, Patrick Ryan, Madelyn Joanis

Honors Theses

Laparoscopic procedures account for 15 million surgeries worldwide [1], with the initial entry into the peritoneal cavity accounting for 33-50% of all major laparoscopic complications [7]. This initial entry is the most dangerous as surgeons must enter the cavity using a sharp object with no visibility and space between the outer surface of the cavity and internal tissues. During the initial entry into the peritoneal cavity, the patients undergoing laparoscopic procedures are at a high risk for damage to internal organs and vasculature, necessitating the development of a device to protect these internal tissues and increase patient safety.


Force Sensing Surgical Grasper With Folding Capacitive Sensor, Dave Bp Tripp Aug 2017

Force Sensing Surgical Grasper With Folding Capacitive Sensor, Dave Bp Tripp

Electronic Thesis and Dissertation Repository

Minimally-invasive surgery (MIS) has brought many benefits to the operating room, however, MIS procedures result in an absence of force feedback, and surgeons cannot as accurately feel the tissue they are working on, or the forces that they are applying. One of the barriers to introducing MIS instruments with force feedback systems is the high cost of manufacturing and assembly. Instruments must also be sterilized before every use, a process that can destroy embedded sensing systems. An instrument that can be disposed of after a single use and produced in bulk at a low cost is desirable. Printed circuit micro-electro-mechanical …


A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber Jul 2017

A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber

Masters Theses

The product of this thesis aims to enable the study of the biochemical and physical dynamics of the lower limbs at high levels of muscle tension and fast contraction speeds. This is accomplished in part by a magnetic resonance (MR) compatible ergometer designed to apply a load as a torque of up to 420 Nm acting against knee extension at speeds as high as 4.7 rad/s. The system can also be adapted to apply the load as a force of up to 1200 N acting against full leg extension. The ergometer is designed to enable the use of magnetic resonance …


Shear Driven Micro-Fluidic Pump For Cardiovascular Applications, Nihad E. Daidzic Apr 2017

Shear Driven Micro-Fluidic Pump For Cardiovascular Applications, Nihad E. Daidzic

Aviation Department Publications

A valveless shear-driven micro-fluidic pump design (SDMFP) for hemodynamic applications is presented in this work. One of the possible medical and biomedical applications is in-vivo hemodynamic (human blood circulation) support/assist. One or more SDMFPs can be inserted/implanted into vascular lumens in a form of a stent/duct in series and/or in parallel (bypass duct) to support blood circulation in-vivo. A comprehensive review of various micro-pump designs up to about mid 2000’s is given in [1,2]. Many of micropump designs considered are not suitable for in-vivo or even in-vitro medical/biomedical applications.

Operating principles, design, and SDMFP features are given in [3]. A …


Force Sensing In Arthroscopic Instruments Using Fiber Bragg Gratings, Daniel S. Yurkewich Apr 2015

Force Sensing In Arthroscopic Instruments Using Fiber Bragg Gratings, Daniel S. Yurkewich

Electronic Thesis and Dissertation Repository

Minimally-invasive surgery has revolutionized many medical procedures; however, it also impedes the ability to feel the interaction between the surgical tool and the anatomical part being operated on. In order to address this problem, it is necessary to obtain accurate measurements of the interaction forces exerted on the surgical tools during surgery. These forces can then be manifested to the surgeon via a haptic device or presented visually (visual-force feedback). This thesis describes the use of a fiber optic device to measure and display to the surgeon interaction forces acting on an arthroscopic tool. The sensorization of the tool involves …


Implementation Of Physiologic Pressure Conditions In A Blood Vessel Mimic Bioreactor System, Kevin Mark Okarski Jul 2010

Implementation Of Physiologic Pressure Conditions In A Blood Vessel Mimic Bioreactor System, Kevin Mark Okarski

Master's Theses

ABSTRACT

Implementation of Physiologic Pressure Conditions in a Blood Vessel Mimic Bioreactor System

Kevin Mark Okarski

Tissue engineering has traditionally been pursued as a therapeutic science intended for restoring or replacing diseased or damaged biologic tissues or organs. Cal Poly’s Blood Vessel Mimic Laboratory is developing a novel application of tissue engineering as a tool for the preclinical evaluation of intravascular devices. The blood vessel mimic (BVM) system has been previously used to assess the tissue response to deployed stents, but under non-physiologic conditions. Since then, efforts have been made to improve the vessel and bioreactor’s ability to emulate in …