Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Force Sensing Surgical Grasper With Folding Capacitive Sensor, Dave Bp Tripp Aug 2017

Force Sensing Surgical Grasper With Folding Capacitive Sensor, Dave Bp Tripp

Electronic Thesis and Dissertation Repository

Minimally-invasive surgery (MIS) has brought many benefits to the operating room, however, MIS procedures result in an absence of force feedback, and surgeons cannot as accurately feel the tissue they are working on, or the forces that they are applying. One of the barriers to introducing MIS instruments with force feedback systems is the high cost of manufacturing and assembly. Instruments must also be sterilized before every use, a process that can destroy embedded sensing systems. An instrument that can be disposed of after a single use and produced in bulk at a low cost is desirable. Printed circuit micro-electro-mechanical …


A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber Jul 2017

A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber

Masters Theses

The product of this thesis aims to enable the study of the biochemical and physical dynamics of the lower limbs at high levels of muscle tension and fast contraction speeds. This is accomplished in part by a magnetic resonance (MR) compatible ergometer designed to apply a load as a torque of up to 420 Nm acting against knee extension at speeds as high as 4.7 rad/s. The system can also be adapted to apply the load as a force of up to 1200 N acting against full leg extension. The ergometer is designed to enable the use of magnetic resonance …


Force Sensing In Arthroscopic Instruments Using Fiber Bragg Gratings, Daniel S. Yurkewich Apr 2015

Force Sensing In Arthroscopic Instruments Using Fiber Bragg Gratings, Daniel S. Yurkewich

Electronic Thesis and Dissertation Repository

Minimally-invasive surgery has revolutionized many medical procedures; however, it also impedes the ability to feel the interaction between the surgical tool and the anatomical part being operated on. In order to address this problem, it is necessary to obtain accurate measurements of the interaction forces exerted on the surgical tools during surgery. These forces can then be manifested to the surgeon via a haptic device or presented visually (visual-force feedback). This thesis describes the use of a fiber optic device to measure and display to the surgeon interaction forces acting on an arthroscopic tool. The sensorization of the tool involves …