Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Biomedical Engineering and Bioengineering

Biophysical And Biomechanical Properties Of Neural Progenitor Cells As Indicators Of Developmental Neurotoxicity, Gautam Mahajan, Moo-Yeal Lee, Chandrasekhar R. Kothapalli Oct 2019

Biophysical And Biomechanical Properties Of Neural Progenitor Cells As Indicators Of Developmental Neurotoxicity, Gautam Mahajan, Moo-Yeal Lee, Chandrasekhar R. Kothapalli

Chemical & Biomedical Engineering Faculty Publications

Conventional in vitro toxicity studies have focused on identifying IC50 and the underlying mechanisms, but how toxicants influence biophysical and biomechanical changes in human cells, especially during developmental stages, remain understudied. Here, using an atomic force microscope, we characterized changes in biophysical (cell area, actin organization) and biomechanical (Young's modulus, force of adhesion, tether force, membrane tension, tether radius) aspects of human fetal brain-derived neural progenitor cells (NPCs) induced by four classes of widely used toxic compounds, including rotenone, digoxin, N-arachidonoylethanolamide (AEA), and chlorpyrifos, under exposure up to 36 h. The sub-cellular mechanisms (apoptosis, mitochondria membrane potential, DNA damage, glutathione …


Thenar Muscle And Transverse Carpal Ligament Relationship, Jeremy Granieri Loss Jan 2019

Thenar Muscle And Transverse Carpal Ligament Relationship, Jeremy Granieri Loss

ETD Archive

The transverse carpal ligament (TCL) acts as a partial origin for the thenar muscles (abductor pollicis brevis (APB), flexor pollicis brevis (FPB), opponens pollicis (OPP)). The attachment between the thenar muscles and TCL implies a relationship between the tissues. The thenar muscles rely on their origins for thumb motion and force production. However, individual thenar origin information is lacking. Further information regarding the anatomical relationship between the individual thenar muscles and TCL may provide insight into thenar muscle function. In addition, the TCL responds to thenar muscle contraction as shown by volar migration of the TCL during various thumb movements. …


Compensation For Inertial And Gravity Effects In A Moving Force Platform, Sandra K. Hnat, Ben J.H. Van Basten, Antonie J. Van Den Bogert Jun 2018

Compensation For Inertial And Gravity Effects In A Moving Force Platform, Sandra K. Hnat, Ben J.H. Van Basten, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Force plates for human movement analysis provide accurate measurements when mounted rigidly on an inertial reference frame. Large measurement errors occur, however, when the force plate is accelerated, or tilted relative to gravity. This prohibits the use of force plates in human perturbation studies with controlled surface movements, or in conditions where the foundation is moving or not sufficiently rigid. Here we present a linear model to predict the inertial and gravitational artifacts using accelerometer signals. The model is first calibrated with data collected from random movements of the unloaded system and then used to compensate for the errors in …


Feasibility Of Using An Equilibrium Point Strategy To Control Reaching Movements Of Paralyzed Arms With Functional Electrical Stimulation, Matthew Huffman Jan 2018

Feasibility Of Using An Equilibrium Point Strategy To Control Reaching Movements Of Paralyzed Arms With Functional Electrical Stimulation, Matthew Huffman

ETD Archive

Functional electrical stimulation (FES) is a technology capable of improving the quality of life for those with the loss of limb movement related to spinal cord injuries. Individuals with high-level tetraplegia, in particular, have lost all movement capabilities below the neck. FES has shown promise in bypassing spinal cord damage by sending electrical impulses directly to a nerve or muscle to trigger a desired function. Despite advancements in FES, full-arm reaching motions have not been achieved, leaving patients unable to perform fundamental tasks such as eating and grooming. To overcome the inability in current FES models to achieve multi-joint coordination, …


Characterizing The Effects Of High-Intensity Exercise On Balance And Gait Under Dual-Task Conditions In Parkinson’S Disease, El Iva Baron Jan 2018

Characterizing The Effects Of High-Intensity Exercise On Balance And Gait Under Dual-Task Conditions In Parkinson’S Disease, El Iva Baron

ETD Archive

Parkinson’s disease (PD) is a neurodegenerative disorder, characterized by four cardinal motor symptoms including bradykinesia, tremor, rigidity, and postural instability, and non-motor symptoms including cognitive impairment. Daily activities, such as walking and maintaining balance, are impacted due to impairments in motor function, and are further exacerbated with the addition of cognitive loading, or dual-tasking (DT). High-intensity exercise has demonstrated centrally-mediated improvements of PD symptoms, with additional positive effects on overall health. The goal of this project was to identify changes in dynamic balance recovery and gait function under conditions with and without increased cognitive load after a high-intensity exercise intervention …


Neuromuscular Reflex Control For Prostheses And Exoskeletons, Sandra K. Hnat Jan 2018

Neuromuscular Reflex Control For Prostheses And Exoskeletons, Sandra K. Hnat

ETD Archive

Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors …


Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin Jan 2018

Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin

ETD Archive

Predictive simulations predict human gait by solving a trajectory optimization problem by minimizing energy expenditure. These simulations could predict the effect of a prosthesis on gait before its use. This dissertation has four aims, to show the application of predictive simulations in prosthesis design and to improve the quality of predictive simulations. Aim 1 was to explain joint moment asymmetry in the knee and hip in gait of persons with a transtibial amputation (TTA gait). Predictive simulations showed that an asymmetric gait required less effort. However, a small effort increase yielded a gait with increased joint moment symmetry and reduced …


Real-Time Simulation Of Three-Dimensional Shoulder Girdle And Arm Dynamics, Edward K. Chadwick, Dimitra Blana, Robert F. Kirsch, Antonie J. Van Den Bogert Jul 2014

Real-Time Simulation Of Three-Dimensional Shoulder Girdle And Arm Dynamics, Edward K. Chadwick, Dimitra Blana, Robert F. Kirsch, Antonie J. Van Den Bogert

Antonie J. van den Bogert

Electrical stimulation is a promising technology for the restoration of arm function in paralyzed individuals. Control of the paralyzed arm under electrical stimulation, however, is a challenging problem that requires advanced controllers and command interfaces for the user. A real-time model describing the complex dynamics of the arm would allow user-in-the-loop type experiments where the command interface and controller could be assessed. Real-time models of the arm previously described have not included the ability to model the independently controlled scapula and clavicle, limiting their utility for clinical applications of this nature. The goal of this study therefore was to evaluate …


Design Optimization Of An Above-Knee Prosthesis With Energy Regeneration, Taylor Barto, Holly Warner, Rick Rarick, Dan Simon Sep 2013

Design Optimization Of An Above-Knee Prosthesis With Energy Regeneration, Taylor Barto, Holly Warner, Rick Rarick, Dan Simon

Undergraduate Research Posters 2013

Above-knee amputees who use a prosthetic leg typically have to compensate for its shortcomings with unnatural hip motions. This compensation eventually leads to adverse health issues such as arthritis. We propose an active prosthesis to improve performance. The motor in our prosthetic knee allows the patient to move his hip normally, thus reducing the possibility of ancillary health issues. To improve the efficiency of the prosthesis, we use the braking phase of the prosthesis to regenerate energy. By storing energy in a supercapacitor during braking, the prosthesis lasts longer between each charge than it would without regenerative braking. We are …


The Biomechanical Role Of Scaffolds In Augmented Rotator Cuff Tendon Repairs, Amit Aurora, Jesse A. Mccarron, Antonie J. Van Den Bogert, Jorge E. Gatica, Joseph P. Iannotti, Kathleen A. Derwin Aug 2012

The Biomechanical Role Of Scaffolds In Augmented Rotator Cuff Tendon Repairs, Amit Aurora, Jesse A. Mccarron, Antonie J. Van Den Bogert, Jorge E. Gatica, Joseph P. Iannotti, Kathleen A. Derwin

Mechanical Engineering Faculty Publications

Background

Scaffolds continue to be developed and used for rotator cuff repair augmentation; however, the appropriate scaffold material properties and/or surgical application techniques for achieving optimal biomechanical performance remains unknown. The objectives of the study were to simulate a previously validated spring-network model for clinically relevant scenarios to predict: (1) the manner in which changes to components of the repair influence the biomechanical performance of the repair and (2) the percent load carried by the scaffold augmentation component.

Materials and methods

The models were parametrically varied to simulate clinically relevant scenarios, namely, changes in tendon quality, altered surgical technique(s), and …


Simulation Of Lower Limb Axial Arterial Length Change During Locomotion, Melissa D. Young, Matthew C. Streicher, Richard J. Beck, Antonie J. Van Den Bogert, Azita Tajaddini, Brian L. Davis May 2012

Simulation Of Lower Limb Axial Arterial Length Change During Locomotion, Melissa D. Young, Matthew C. Streicher, Richard J. Beck, Antonie J. Van Den Bogert, Azita Tajaddini, Brian L. Davis

Mechanical Engineering Faculty Publications

The effect of external forces on axial arterial wall mechanics has conventionally been regarded as secondary to hemodynamic influences. However, arteries are similar to muscles in terms of the manner in which they traverse joints, and their three-dimensional geometrical requirements for joint motion. This study considers axial arterial shortening and elongation due to motion of the lower extremity during gait, ascending stairs, and sitting-to-standing motion. Arterial length change was simulated by means of a graphics based anatomic and kinematic model of the lower extremity. This model estimated the axial shortening to be as much as 23% for the femoropopliteal arterial …


Personal Navigation Via High-Resolution Gait-Corrected Inertial Measurement Units, Özkan Bebek, Michael A. Suster, Srihari Rajgopal, Michael J. Fu, Xuemei Huang, M. Cenk Çavu¸So˘Glu,, Darrin J. Young, Mehran Mehregany, Antonie J. Van Den Bogert, Carlos H. Mastrangelo Nov 2010

Personal Navigation Via High-Resolution Gait-Corrected Inertial Measurement Units, Özkan Bebek, Michael A. Suster, Srihari Rajgopal, Michael J. Fu, Xuemei Huang, M. Cenk Çavu¸So˘Glu,, Darrin J. Young, Mehran Mehregany, Antonie J. Van Den Bogert, Carlos H. Mastrangelo

Mechanical Engineering Faculty Publications

In this paper, a personal micronavigation system that uses high-resolution gait-corrected inertial measurement units is presented. The goal of this paper is to develop a navigation system that uses secondary inertial variables, such as velocity, to enable long-term precise navigation in the absence of Global Positioning System (GPS) and beacon signals. In this scheme, measured zerovelocity duration from the ground reaction sensors is used to reset the accumulated integration errors from accelerometers and gyroscopes in position calculation. With the described system, an average position error of 4 m is achieved at the end of half-hour walks.


A Distributed Model Of Carbohydrate Transport And Metabolism In The Liver During Rest And High-Intensity Exercise, E Chalhoub, L. Xie, V. Balasubramanian, Joanne M. Belovich Mar 2007

A Distributed Model Of Carbohydrate Transport And Metabolism In The Liver During Rest And High-Intensity Exercise, E Chalhoub, L. Xie, V. Balasubramanian, Joanne M. Belovich

Chemical & Biomedical Engineering Faculty Publications

A model of reaction and transport in the liver was developed that describes the metabolite concentration and reaction flux dynamics separately within the tissue and blood domains. The blood domain contains equations for convection, axial dispersion, and transport to the surrounding tissue; and the tissue domain consists of reactions representing key carbohydrate metabolic pathways. The model includes the metabolic heterogeneity of the liver by incorporating spatial variation of key enzymatic maximal activities. Simulation results of the overnight fasted, resting state agree closely with experimental values of overall glucose uptake and lactate output by the liver. The incorporation of zonation …