Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Automotive Engineering

Electronic Cvt - Controls, Alec William Hardy, Jessalyn Leora Ann Bernick, Nicholas Esteban Capdevila, Tristan Charles Perry Jul 2019

Electronic Cvt - Controls, Alec William Hardy, Jessalyn Leora Ann Bernick, Nicholas Esteban Capdevila, Tristan Charles Perry

Mechanical Engineering

The following document outlines the design process, manufacturing, and testing of the control system for an electronically controlled continuously variable transmission (ECVT). This control system was integrated into the custom designed and manufactured mechanical transmission system created in parallel by another senior project group. The transmission was designed for use in the Cal Poly Baja SAE vehicle. Through researching customer needs, competition requirements, previous and alternate CVT designs, and vehicle characteristics, we were able to determine the requirements and specifications for our unique system. Input, output, speed, and durability requirements guided our hardware selection. The primary components which comprised our ...


Autonomous Vehicles Operating Collaboratively To Avoid Debris And Obstructions, Toan T. Le, Cole W. Oppenheim, James H. Gildart, Kyle M. Bybee May 2019

Autonomous Vehicles Operating Collaboratively To Avoid Debris And Obstructions, Toan T. Le, Cole W. Oppenheim, James H. Gildart, Kyle M. Bybee

Mechanical Engineering

The purpose of this project is to demonstrate the safety and increased fuel efficiency of an automated collision avoidance system in collaborative vehicle platooning. This project was cosponsored by Daimler Trucks North America headquartered in Portland, Oregon, as well as Dr. Birdsong, and Dr. DeBruhl of Cal Poly. The mechanical engineering team consists of Cole Oppenheim, James Gildart, Toan Le, and Kyle Bybee who worked in coordination with a team of computer engineers. Vehicle platooning is a driving technique to increase the fuel efficiency of a group of vehicles by following a lead vehicle closely to reduce the drag experienced ...


Autonomous Speed Control For Kia Optima, Andrew J. Combs, Kyle Fugatt, Kevin Mcfall Jun 2017

Autonomous Speed Control For Kia Optima, Andrew J. Combs, Kyle Fugatt, Kevin Mcfall

The Kennesaw Journal of Undergraduate Research

The standard method for speed control is the cruise control system built into most modern vehicles. These systems employ a PID controller which actuates the accelerator thus, in turn, maintains the desired vehicle speed. The main drawback of such a system is that typically the cruise control will only engage above 25 mph. The goal of this paper is to describe a system which we used to control vehicle speed from a stop to any desired speed using an Arduino microcontroller and a CAN BUS shield, from where autonomous features can be built upon. With this system, we were able ...


Small-Scale Intelligent Vehicle Design Platform, Christopher Grant, Jay Miley, Evan Phillips Jun 2017

Small-Scale Intelligent Vehicle Design Platform, Christopher Grant, Jay Miley, Evan Phillips

Mechanical Engineering

Intelligent Vehicle Design is a growing field with the potential to save many lives by actively minimizing the impacts of human error. Though there are many ways to research intelligent vehicle control, full-scale implementations are expensive and dangerous and computer simulations have extremely steep learning curves. Researchers and students need an accessible, adaptable, and robust development platform to rapidly create and test autonomous control algorithms. While small-scale platforms are often designed from the ground up for specific projects, this requires analysis, design, and manufacture. The goal of this project is to develop a small-scale intelligent vehicle that can be configured ...


Physics-Based Modeling And Control Of Powertrain Systems Integrated With Low Temperature Combustion Engines, Mehran Bidarvatan Jan 2015

Physics-Based Modeling And Control Of Powertrain Systems Integrated With Low Temperature Combustion Engines, Mehran Bidarvatan

Dissertations, Master's Theses and Master's Reports

Low Temperature Combustion (LTC) holds promise for high thermal efficiency and low Nitrogen Oxides (NOx) and Particulate Matter (PM) exhaust emissions. Fast and robust control of different engine variables is a major challenge for real-time model-based control of LTC. This thesis concentrates on control of powertrain systems that are integrated with a specific type of LTC engines called Homogenous Charge Compression Ignition (HCCI). In this thesis, accurate mean value and dynamic cycleto- cycle Control Oriented Models (COMs) are developed to capture the dynamics of HCCI engine operation. The COMs are experimentally validated for a wide range of HCCI steady-state and ...