Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Automotive Engineering

Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams May 2017

Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams

Senior Theses

A solar cell powered go-kart has been built and tested. The result shows using solar energy alone cannot meet the requirement of running a regular passenger car. This is due to the limited surface area of the passenger car. This thesis also discusses the operating principles of solar panels, the physics of P type and N type semiconductors, and the formation of the PN junction, as well as the solar current. Modifications of an existing go-kart are described in detail in this thesis. Suggestions for making green vehicles are discussed as well.


Modeling And Control Of A Modular Battery Management System For Lithium-Ion Battery Packs, Fan Zhang Apr 2017

Modeling And Control Of A Modular Battery Management System For Lithium-Ion Battery Packs, Fan Zhang

Electrical, Computer & Energy Engineering Graduate Theses & Dissertations

High voltage (HV) traction battery packs in electric-drive vehicles (HEV, PHEV, BEV) consist of a large number of battery cells connected in series. As individual cells exhibit mismatches in characteristics such as capacity, inner resistance, and run-time state-of-charge (SOC), cell balancing must be incorporated into the battery management system (BMS). Conventional passive cell balancing does not fully address the mismatch issues, which leads to shorter battery lifetime, and the need to over-size the battery pack. To overcome the problems associated with the conventional architecture, a modular battery management system incorporating both active cell balancing and high voltage (HV) to low-voltage ...


Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad Jan 2017

Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad

Dissertations, Master's Theses and Master's Reports

Powertrain electrification including hybridizing advanced combustion engines is a viable cost-effective solution to improve fuel economy of vehicles. This will provide opportunity for narrow-range high-efficiency combustion regimes to be able to operate and consequently improve vehicle’s fuel conversion efficiency, compared to conventional hybrid electric vehicles (HEV)s. Low temperature combustion (LTC) engines offer the highest peak brake thermal efficiency reported in literature, but these engines have narrow operating range. In addition, LTC engines have ultra-low soot and nitrogen oxides (NOx) emissions, compared to conventional compression ignition and spark ignition (SI) engines. This dissertation concentrates on integrating the LTC engines ...