Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Automotive Engineering

Design And Development Of A Multi-Material, Cost-Competitive, Lightweight Mid-Size Sports Utility Vehicle’S Body-In-White, Amit M. Deshpande, Rushabh Rajesh Sadiwala, Nathan Brown, Sai Aditya Pradeep, Leon M. Headings, Ningxiner Zhao, Brad Losey, Ryan Hahnlen, Marcelo J. Dapino, Gang Li, Srikanth Pilla Oct 2022

Design And Development Of A Multi-Material, Cost-Competitive, Lightweight Mid-Size Sports Utility Vehicle’S Body-In-White, Amit M. Deshpande, Rushabh Rajesh Sadiwala, Nathan Brown, Sai Aditya Pradeep, Leon M. Headings, Ningxiner Zhao, Brad Losey, Ryan Hahnlen, Marcelo J. Dapino, Gang Li, Srikanth Pilla

Publications

Vehicle light-weighting has allowed automotive original equipment manufacturers (OEMs) to improve fuel efficiency, incorporate value-adding features without a weight penalty, and extract better performance. The typical body-in-white (BiW) accounts for up to 40% of the total vehicle mass, making it the focus of light-weighting efforts through a) conceptual redesign b) design optimization using state-of-the-art computer-aided engineering (CAE) tools, and c) use of advanced high strength steels (AHSS), aluminum, magnesium, and/or fiber-reinforced plastic (FRP) composites. However, most of these light-weighting efforts have been focused on luxury/sports vehicles, with a relatively high price range and an average production of 100,000 units/year or …


Numerical Implementation And Validation Of A Viscoelastic-Plastic Material Model For Predicting Curing Induced Residual Stresses In Adhesive Bonded Joints, Akshat Agha, Fadi Abu-Farha Jun 2022

Numerical Implementation And Validation Of A Viscoelastic-Plastic Material Model For Predicting Curing Induced Residual Stresses In Adhesive Bonded Joints, Akshat Agha, Fadi Abu-Farha

Publications

One of the main challenges in the joining of multi-material components is the assessment of the nature and magnitude of the residual stresses developing in the adhesive bond during the heat curing manufacturing process. Numerical modeling of these residual stresses can provide insights for making informed decisions related to (i) material substrate properties; (ii) adhesive properties i.e., low, medium, or high stiffness; (iii) bondline geometry i.e., bondline width and bead thickness; (iv) curing cycle characteristics; and (v) fixation design i.e., type, spacing, the number of joints. This work presents a cure history-dependent viscoelastic-plastic material description for the modeling of adhesive …


Thermoforming Process Effects On Structural Performance Of Carbon Fiber Reinforced Thermoplastic Composite Parts Through A Manufacturing To Response Pathway, Madhura Limaye, Sai Aditya Pradeep, Anmol Kothari, Sushil Savla, Akshat Agha, Srikanth Pilla, Gang Li Feb 2022

Thermoforming Process Effects On Structural Performance Of Carbon Fiber Reinforced Thermoplastic Composite Parts Through A Manufacturing To Response Pathway, Madhura Limaye, Sai Aditya Pradeep, Anmol Kothari, Sushil Savla, Akshat Agha, Srikanth Pilla, Gang Li

Publications

Thermoforming process of thermoplastic-based continuous CFRP's offer a major advantage in reducing cycle times for large-scale productions, but it can also have a significant impact on the structural performance of the parts by inducing undesirable effects. This necessitates the development of an optimal manufacturing process that minimizes the introduction of undesirable factors in the structure and thereby achieves the targeted mechanical performance. This can be done by first establishing a relationship between the manufacturing process and mechanical performance and successively optimizing it to achieve the desired targets. The current study focuses on the former part, where a manufacturing-to-response (MTR) pathway …


Advances In Automotive Conversion Coatings During Pretreatment Of The Body Structure: A Review, Mark Doerre, Larry Hibbitts, Gabriela Patrick, Nelson K. Akafuah Nov 2018

Advances In Automotive Conversion Coatings During Pretreatment Of The Body Structure: A Review, Mark Doerre, Larry Hibbitts, Gabriela Patrick, Nelson K. Akafuah

Institute of Research for Technology Development Faculty Publications

Automotive conversion coatings consist of layers of materials that are chemically applied to the body structures of vehicles before painting to improve corrosion protection and paint adhesion. These coatings are a consequence of surface-based chemical reactions and are sandwiched between paint layers and the base metal; the chemical reactions involved distinctly classify conversion coatings from other coating technologies. Although the tri-cationic conversion coating bath chemistry that was developed around the end of the 20th century remains persistent, environmental, health, and cost issues favor a new generation of greener methods and materials such as zirconium. Environmental forces driving lightweight material selection …


Novel Ternary Magnesium-Tin Alloys By Microalloying, Sadegh Behdad Oct 2015

Novel Ternary Magnesium-Tin Alloys By Microalloying, Sadegh Behdad

FIU Electronic Theses and Dissertations

The objective of this research was to explore the possibility of developing novel Magnesium-Tin alloys with improved mechanical properties by micro-alloying. Magnesium is the lightest of all structural metals. It can be machined faster and with almost half the power required for aluminum. There is a limitless supply of magnesium in sea water and it can also be recycled at 5% of initial energy requirements. These properties make magnesium an ideal green alternative to replace metals and polymers in automotive, aerospace, biomedical and defense sectors. The potential weight reduction in the US automotive market alone, leads to 100 billion gallons …