Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Robotics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 27 of 27

Full-Text Articles in Automotive Engineering

Development Of A Soft Robotic Approach For An Intra-Abdominal Wireless Laparoscopic Camera, Hui Liu Aug 2023

Development Of A Soft Robotic Approach For An Intra-Abdominal Wireless Laparoscopic Camera, Hui Liu

Doctoral Dissertations

In Single-Incision Laparoscopic Surgery (SILS), the Magnetic Anchoring and Guidance System (MAGS) arises as a promising technique to provide larger workspaces and field of vision for the laparoscopes, relief space for other instruments, and require fewer incisions. Inspired by MAGS, many concept designs related to fully insertable magnetically driven laparoscopes are developed and tested on the transabdominal operation. However, ignoring the tissue interaction and insertion procedure, most of the designs adopt rigid structures, which not only damage the patients' tissue with excess stress concentration and sliding motion but also require complicated operation for the insertion. Meanwhile, lacking state tracking of …


Human Tracking Function For Robotic Dog, Andrew Sharkey Jan 2023

Human Tracking Function For Robotic Dog, Andrew Sharkey

Williams Honors College, Honors Research Projects

With the increase the increase in automation and humans and robots working side by side, there is a need for a more organic way of controlling robots. The goal of this project is to create a control system for Boston dynamics robotic dog Spot that implements human tracking image software to follow humans using computer vision as well as using hand tracking image software to allow for control input through hand gestures.


Multi-Robot Symbolic Task And Motion Planning Leveraging Human Trust Models: Theory And Applications, Huanfei Zheng Nov 2022

Multi-Robot Symbolic Task And Motion Planning Leveraging Human Trust Models: Theory And Applications, Huanfei Zheng

All Dissertations

Multi-robot systems (MRS) can accomplish more complex tasks with two or more robots and have produced a broad set of applications. The presence of a human operator in an MRS can guarantee the safety of the task performing, but the human operators can be subject to heavier stress and cognitive workload in collaboration with the MRS than the single robot. It is significant for the MRS to have the provable correct task and motion planning solution for a complex task. That can reduce the human workload during supervising the task and improve the reliability of human-MRS collaboration. This dissertation relies …


Reduced Fuel Emissions Through Connected Vehicles And Truck Platooning, Paul D. Brummitt Aug 2022

Reduced Fuel Emissions Through Connected Vehicles And Truck Platooning, Paul D. Brummitt

Electronic Theses and Dissertations

Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag …


The Effects Of Ecological Simulation For Ground Vehicle Mobility Forecasting, Christopher R. Hudson May 2022

The Effects Of Ecological Simulation For Ground Vehicle Mobility Forecasting, Christopher R. Hudson

Theses and Dissertations

Unmanned ground vehicles (UGV) are being explored for use in military domains. Military UGVs operate in complex off-road environments. Vehicle mobility forecasting plays an important role in understanding how and where a vehicle can operate. Traditional mobility forecasting has been done using an analytical model known as the NATO Reference Mobility Model (NRMM). There has been a push to extend the forecasting capabilities of NRMM by integrating more simulation methods. Simulation enables the repeated testing of UGVs in scenarios that would be difficult or dangerous to study in real world testing. To accurately capture UGV performance in simulation, the operating …


Automotive Sensor Fusion Systems For Traffic Aware Adaptive Cruise Control, Jonah T. Gandy May 2022

Automotive Sensor Fusion Systems For Traffic Aware Adaptive Cruise Control, Jonah T. Gandy

Theses and Dissertations

The autonomous driving (AD) industry is advancing at a rapid pace. New sensing technology for tracking vehicles, controlling vehicle behavior, and communicating with infrastructure are being added to commercial vehicles. These new automotive technologies reduce on road fatalities, improve ride quality, and improve vehicle fuel economy. This research explores two types of automotive sensor fusion systems: a novel radar/camera sensor fusion system using a long shortterm memory (LSTM) neural network (NN) to perform data fusion improving tracking capabilities in a simulated environment and a traditional radar/camera sensor fusion system that is deployed in Mississippi State’s entry in the EcoCAR Mobility …


Control, Decision-Making, And Learning Approaches For Connected And Autonomous Driving Systems With Humans-In-The-Loop, Fangjian Li May 2022

Control, Decision-Making, And Learning Approaches For Connected And Autonomous Driving Systems With Humans-In-The-Loop, Fangjian Li

All Dissertations

By virtue of vehicular connectivity and automation, the vehicle becomes increasingly intelligent and self-driving capable. However, no matter what automation level the vehicle can achieve, humans will still be in the loop despite their roles. First, considering the manual driving car as a disturbance to the connected and autonomous vehicles (CAVs), a novel string stability is proposed for mixed traffic platoons consisting of both autonomous and manual driving cars to guarantee acceptable motion fluctuation and platoon safety. Furthermore, humans are naturally considered as the rider in the passenger vehicle. A human-centered cooperative adaptive cruise control (CACC) is designed to improve …


A Brief Literature Review For Machine Learning In Autonomous Robotic Navigation, Jake Biddy, Jeremy Evert Apr 2022

A Brief Literature Review For Machine Learning In Autonomous Robotic Navigation, Jake Biddy, Jeremy Evert

Student Research

Machine learning is becoming very popular in many technological aspects worldwide, including robotic applications. One of the unique aspects of using machine learning in robotics is that it no longer requires the user to program every situation. The robotic application will be able to learn and adapt from its mistakes. In most situations, robotics using machine learning is designed to fulfill a task better than a human could, and with the machine learning aspect, it can function at the highest level of efficiency and quality. However, creating a machine learning program requires extensive coding and programming knowledge that can be …


Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D Jul 2021

Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D

Department of Mathematics: Faculty Publications

Abstract
Is it true that we solve problem using techniques in form of formula? Mathematical formulas can be derived through thinking of a problem or situation. Research has shown that we can create formulas by applying theoretical, technical, and applied knowledge. The knowledge derives from brainstorming and actual experience can be represented by formulas. It is intended that this research article is geared by an audience of average knowledge level of solving mathematics and scientific intricacies. This work details an introductory level of simple, at times complex problems in a mathematical epidermis and computability and solvability in a Computer Science. …


Deep Learning Assisted Intelligent Visual And Vehicle Tracking Systems, Liang Xu Jan 2021

Deep Learning Assisted Intelligent Visual And Vehicle Tracking Systems, Liang Xu

Theses and Dissertations

Sensor fusion and tracking is the ability to bring together measurements from multiple sensors of the current and past time to estimate the current state of a system. The resulting state estimate is more accurate compared with the direct sensor measurement because it balances between the state prediction based on the assumed motion model and the noisy sensor measurement. Systems can then use the information provided by the sensor fusion and tracking process to support more-intelligent actions and achieve autonomy in a system like an autonomous vehicle. In the past, widely used sensor data are structured, which can be directly …


Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo Jan 2021

Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo

Graduate Theses, Dissertations, and Problem Reports

Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making …


Efficient End-To-End Autonomous Driving, Hesham Eraqi Dec 2020

Efficient End-To-End Autonomous Driving, Hesham Eraqi

Theses and Dissertations

Steering a car through traffic is a complex task that is difficult to cast into algorithms. Therefore, researchers turn to train artificial neural networks from front-facing camera data stream along with the associated steering angles. Nevertheless, most existing solutions consider only the visual camera frames as input, thus ignoring the temporal relationship between frames. In this work, we propose a Convolution Long Short-Term Memory Recurrent Neural Network (C-LSTM), which is end-to-end trainable, to learn both visual and dynamic temporal dependencies of driving. Additionally, We introduce posing the steering angle regression problem as classification while imposing a spatial relationship between the …


Towards Sensorimotor Coupling Of A Spiking Neural Network And Deep Reinforcement Learning For Robotics Application, Kashu Yamazaki Dec 2020

Towards Sensorimotor Coupling Of A Spiking Neural Network And Deep Reinforcement Learning For Robotics Application, Kashu Yamazaki

Mechanical Engineering Undergraduate Honors Theses

Deep reinforcement learning augments the reinforcement learning framework and utilizes the powerful representation of deep neural networks. Recent works have demonstrated the great achievements of deep reinforcement learning in various domains including finance,medicine, healthcare, video games, robotics and computer vision.Deep neural network was started with multi-layer perceptron (1stgeneration) and developed to deep neural networks (2ndgeneration)and it is moving forward to spiking neural networks which are knownas3rdgeneration of neural networks. Spiking neural networks aim to bridge the gap between neuroscience and machine learning, using biologically-realistic models of neurons to carry out computation. In this thesis, we first provide a comprehensive review …


Techniques To Solve Decision-Making Problems, Dilnoz Tulkunovna Muhamediyeva, Bekmuratov Fayzievich Tulkun Feb 2020

Techniques To Solve Decision-Making Problems, Dilnoz Tulkunovna Muhamediyeva, Bekmuratov Fayzievich Tulkun

Chemical Technology, Control and Management

Solving decision-making problems in poorly formalized systems only with the help of deterministic and probabilistic methods is insufficient. To do this, it is necessary to widely apply the methods of hybrid intelligent systems and, especially, the methods of “soft” calculations (SoftCalculation, SoftComputing) and the directions of ComputationalIntelligence — intelligent computing technologies that are emerging on this theoretical and methodological base. An immune - fuzzy algorithm for the synthesis of fuzzy inference systems (FIS) is proposed. A two-stage adaptive FIS synthesis algorithm is described. At the first stage, the initial fuzzy parameters are clustered in order to reduce the number of …


Geometric State Observers For Autonomous Navigation Systems, Miaomiao Wang Jan 2020

Geometric State Observers For Autonomous Navigation Systems, Miaomiao Wang

Electronic Thesis and Dissertation Repository

The development of reliable state estimation algorithms for autonomous navigation systems is of great interest in the control and robotics communities. This thesis studies the state estimation problem for autonomous navigation systems. The first part of this thesis is devoted to the pose estimation on the Special Euclidean group $\SE(3)$. A generic globally exponentially stable hybrid estimation scheme for pose (orientation and position) and velocity-bias estimation on $\SE(3)\times \mathbb{R}^6$ is proposed. Moreover, an explicit hybrid observer, using inertial and landmark position measurements, is provided.

The second part of this thesis is devoted to the problem of simultaneous estimation of the …


Route Planning For Long-Term Robotics Missions, Christopher Alexander Arend Tatsch Jan 2020

Route Planning For Long-Term Robotics Missions, Christopher Alexander Arend Tatsch

Graduate Theses, Dissertations, and Problem Reports

Many future robotic applications such as the operation in large uncertain environment depend on a more autonomous robot. The robotics long term autonomy presents challenges on how to plan and schedule goal locations across multiple days of mission duration. This is an NP-hard problem that is infeasible to solve for an optimal solution due to the large number of vertices to visit. In some cases the robot hardware constraints also adds the requirement to return to a charging station multiple times in a long term mission. The uncertainties in the robot model and environment require the robot planner to account …


Quantitative Performance Assessment Of Lidar-Based Vehicle Contour Estimation Algorithms For Integrated Vehicle Safety Applications, David M. Mothershed Jan 2020

Quantitative Performance Assessment Of Lidar-Based Vehicle Contour Estimation Algorithms For Integrated Vehicle Safety Applications, David M. Mothershed

Electronic Theses and Dissertations

Many nations and organizations are committing to achieving the goal of `Vision Zero' and eliminate road traffic related deaths around the world. Industry continues to develop integrated safety systems to make vehicles safer, smarter and more capable in safety critical scenarios. Passive safety systems are now focusing on pre-crash deployment of restraint systems to better protect vehicle passengers. Current commonly used bounding box methods for shape estimation of crash partners lack the fidelity required for edge case collision detection and advanced crash modeling. This research presents a novel algorithm for robust and accurate contour estimation of opposing vehicles. The presented …


Self-Driving Toy Car Using Deep Learning, Fahim Ahmed, Suleyman Turac, Mubtasem Ali Dec 2019

Self-Driving Toy Car Using Deep Learning, Fahim Ahmed, Suleyman Turac, Mubtasem Ali

Publications and Research

Our research focuses on building a student affordable platform for scale model self-driving cars. The goal of this project is to explore current developments of Open Source hardware and software to build a low-cost platform consisting of the car chassis/framework, sensors, and software for the autopilot. Our research will allow other students with low budget to enter into the world of Deep Learning, self-driving cars, and autonomous cars racing competitions.


Comparison Of Lqr And Lqr-Mrac For Linear Tractor-Trailer Model, Kevin Richard Gasik May 2019

Comparison Of Lqr And Lqr-Mrac For Linear Tractor-Trailer Model, Kevin Richard Gasik

Master's Theses

The United States trucking industry is immense. Employing over three million drivers and traveling to every city in the country. Semi-Trucks travel millions of miles each week and encompass roads that civilians travel on. These vehicles should be safe and allow efficient travel for all. Autonomous vehicles have been discussed in controls for many decades. Now fleets of autonomous vehicles are beginning their integration into society. The ability to create an autonomous system requires domain and system specific knowledge. Approaches to implement a fully autonomous vehicle have been developed using different techniques in control systems such as Kalman Filters, Neural …


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino Apr 2019

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Student Scholar Showcase

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades, advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats, and an increasing popularity of self-driving cars. We predicted the motion of an autonomous vehicle using simulations in Python. The simulation models the motion of a small scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as …


Unsupervised Feature Learning For Point Cloud By Contrasting And Clustering With Graph Convolutional Neural Network, Ling Zhang Jan 2019

Unsupervised Feature Learning For Point Cloud By Contrasting And Clustering With Graph Convolutional Neural Network, Ling Zhang

Dissertations and Theses

Recently, deep graph neural networks (GNNs) have attracted significant attention for point cloud understanding tasks, including classification, segmentation, and detection. However, the training of such deep networks still requires a large amount of annotated data, which is both expensive and time-consuming. To alleviate the cost of collecting and annotating large-scale point cloud datasets, we propose an unsupervised learning approach to learn features from unlabeled point cloud ”3D object” dataset by using part contrasting and object clustering with GNNs. In the contrast learning step, all the samples in the 3D object dataset are cut into two parts and put into a …


Hand Motion Tracking System Using Inertial Measurement Units And Infrared Cameras, Nonnarit O-Larnnithipong Nov 2018

Hand Motion Tracking System Using Inertial Measurement Units And Infrared Cameras, Nonnarit O-Larnnithipong

FIU Electronic Theses and Dissertations

This dissertation presents a novel approach to develop a system for real-time tracking of the position and orientation of the human hand in three-dimensional space, using MEMS inertial measurement units (IMUs) and infrared cameras. This research focuses on the study and implementation of an algorithm to correct the gyroscope drift, which is a major problem in orientation tracking using commercial-grade IMUs. An algorithm to improve the orientation estimation is proposed. It consists of: 1.) Prediction of the bias offset error while the sensor is static, 2.) Estimation of a quaternion orientation from the unbiased angular velocity, 3.) Correction of the …


Intelligent Ground Vehicle Competition, Austin R. Tyler, Chris R. Estock, Johnathan P. Johenning, Garrett W. Chonko, Allen C. Gilleland Jan 2017

Intelligent Ground Vehicle Competition, Austin R. Tyler, Chris R. Estock, Johnathan P. Johenning, Garrett W. Chonko, Allen C. Gilleland

Williams Honors College, Honors Research Projects

The Intelligent Ground Vehicle Competition (IGVC) draws teams from various universities to compete in the annual autonomous vehicle challenge at the Oakland University campus. To compete, a vehicle must be fully autonomous and can navigate a course designated by various obstacles and painted white lines. Some design challenges are motor control, navigation, environment sensing and safety. A complex navigation system will utilize several tools including a high-precision differential GPS. The vehicle’s surroundings will be mapped using a combination of Light Detection and Ranging (LiDAR) and computer-vision enabled imaging. To comply with IGVC rules, the vehicle must also follow several safety …


Electronic Deer Warning System, David Zhuo, Anlang Lu Dec 2016

Electronic Deer Warning System, David Zhuo, Anlang Lu

Computer Engineering

Deer-vehicle collisions (DVCs) are extremely dangerous, often injuring or even killing drivers. Unfortunately, this form of automotive accident is commonplace in the United States. According to the NHTSA, DVCs result in 200 human deaths a year.2

Despite these deadly incidents, there currently are no deployed federal or state systems for preventing DVCs. There are many consumer electronic deer deterrent products, but their long-term effectiveness is questionable.3 In fact, there does not appear to be much research into electronic deer deterrent systems. Aside from constant audio output and electric shock, no other means of electronic deterrent exist. Even if fixed deterrents …


A Simulation-Based Layered Framework Framework For The Development Of Collaborative Autonomous Systems, Ioannis Sakiotis Jul 2016

A Simulation-Based Layered Framework Framework For The Development Of Collaborative Autonomous Systems, Ioannis Sakiotis

Computational Modeling & Simulation Engineering Theses & Dissertations

The purpose of this thesis is to introduce a simulation-based software framework that facilitates the development of collaborative autonomous systems. Significant commonalities exist in the design approaches of both collaborative and autonomous systems, mirroring the sense, plan, act paradigm, and mostly adopting layered architectures. Unfortunately, the development of such systems is intricate and requires low-level interfacing which significantly detracts from development time. Frameworks for the development of collaborative and autonomous systems have been developed but are not flexible and center on narrow ranges of applications and platforms. The proposed framework utilizes an expandable layered structure that allows developers to define …


A Lidar Based Semi-Autonomous Collision Avoidance System And The Development Of A Hardware-In-The-Loop Simulator To Aid In Algorithm Development And Human Studies, Thomas F. Stevens Dec 2015

A Lidar Based Semi-Autonomous Collision Avoidance System And The Development Of A Hardware-In-The-Loop Simulator To Aid In Algorithm Development And Human Studies, Thomas F. Stevens

Master's Theses

In this paper, the architecture and implementation of an embedded controller for a steering based semi-autonomous collision avoidance system on a 1/10th scale model is presented. In addition, the development of a 2D hardware-in-the-loop simulator with vehicle dynamics based on the bicycle model is described. The semi-autonomous collision avoidance software is fully contained onboard a single-board computer running embedded GNU/Linux. To eliminate any wired tethers that limit the system’s abilities, the driver operates the vehicle at a user-control-station through a wireless Bluetooth interface. The user-control-station is outfitted with a game-controller that provides standard steering wheel and pedal controls along …


Autonomous Cars And Driverless Lethal Autonomy, Nyagudi Musandu Nyagudi Nov 2015

Autonomous Cars And Driverless Lethal Autonomy, Nyagudi Musandu Nyagudi

Nyagudi M Nyagudi

“The small picture” - make an advanced autonomous /driverless car. Lots of algorithms, sensors, computers and other gizmos. Now get it to take you to work, park itself and seamlessly run your family errands around the city. Taking grandma to the doctor for the medical check-up, getting the children from school, etc. With Radar, Lidar and other sensors, the car steering with ease through the traffic, no driver to pay, that is another plus, fuel/energy efficiency, yet another plus. It is a bold new world and the sky is the limit. Without the resolution of “small picture” issues there is …