Open Access. Powered by Scholars. Published by Universities.®

Structures and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Civil and Environmental Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 28 of 28

Full-Text Articles in Structures and Materials

Metal Organic Framework Modifications Of Structural Fibers, Marwan Al-Haik Dec 2023

Metal Organic Framework Modifications Of Structural Fibers, Marwan Al-Haik

Publications

A reinforced carbon composite can include a carbon sub­strate and a metal organic framework bonded to the carbon substrate. For example, a reinforced carbon composite can include a first layer, a second layer, and a resin adhered to the first layer and the second layer. The first layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate. The second layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate.


Empowering Student Success: Unlocking The Potential Of Project-Based Steel Design Education, Aly Mousaad Aly Jun 2023

Empowering Student Success: Unlocking The Potential Of Project-Based Steel Design Education, Aly Mousaad Aly

Faculty Publications

In the pursuit of student success, it is essential to acknowledge that a singular teaching style does not universally cater to all students. The educator's crucial role lies in creating an optimal learning environment that fosters students' endeavors to excel. This endeavor transcends mere classroom success or employment prospects, encompassing a broader impact on societal well-being. An experiential learning approach, where students actively engage in practical tasks, emerges as the most effective mode of instruction. Integrating project-based learning activities into the curriculum holds immense potential for enhancing student learning. Additionally, the utilization of analysis software tools like FTool and STAAD …


Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi Dec 2022

Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi

Civil and Environmental Engineering Theses and Dissertations

Various seismic and wind engineering designs and retrofit strategies have been in development to meet structures' proper and safe operation during earthquake and wind excitation. One such method is the addition of fluid and particle dampers, such as sand dampers, in an effort to reduce excessive and dangerous displacements of structures. The present study implements the discrete element method (DEM) to assess the performance of a pressurized sand damper (PSD) and characterize the dissipated energy under cyclic loading. The idea of a PSD is to exploit the increase in shearing resistance of sand under external pressure and the associated ability …


Metal Organic Framework Modifications Of Structural Fibers, Marwan Al-Haik Dec 2022

Metal Organic Framework Modifications Of Structural Fibers, Marwan Al-Haik

Publications

A reinforced carbon composite can include a carbon sub­strate and a metal organic framework bonded to the carbon substrate. For example, a reinforced carbon composite can include a first layer, a second layer, and a resin adhered to the first layer and the second layer. The first layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate. The second layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate.


Accelerated Controller Tuning For Wind Turbines Under Multiple Hazards, Aly Mousaad Aly, Milad Rezaee Mar 2021

Accelerated Controller Tuning For Wind Turbines Under Multiple Hazards, Aly Mousaad Aly, Milad Rezaee

Faculty Publications

During their lifecycle, wind turbines can be subjected to multiple hazard loads, such as high-intensity wind, earthquake, wave, and mechanical unbalance. Excessive vibrations, due to these loads, can have detrimental effects on energy production, structural lifecycle, and the initial cost of wind turbines. Vibration control by various means, such as passive, active, and semi-active control systems provide crucial solutions to these issues. We developed a novel control theory that enables semi-active controller tuning under the complex structural behavior and inherent system nonlinearity. The proposed theory enables the evaluation of semi-active controllers’ performance of multi-degrees-of-freedom systems, without the need for time-consuming …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


Novel Structural Health Monitoring And Damage Detection Approaches For Composite And Metallic Structures, Shervin Tashakori Jun 2018

Novel Structural Health Monitoring And Damage Detection Approaches For Composite And Metallic Structures, Shervin Tashakori

FIU Electronic Theses and Dissertations

Mechanical durability of the structures should be continuously monitored during their operation. Structural health monitoring (SHM) techniques are typically used for gathering the information which can be used for evaluating the current condition of a structure regarding the existence, location, and severity of the damage. Damage can occur in a structure after long-term operating under service loads or due to incidents. By detection of these defects at the early stages of their growth and nucleation, it would be possible to not only improve the safety of the structure but also reduce the operating costs. The main goal of this dissertation …


Investigating Scale Effects On Analytical Methods Of Predicting Peak Wind Loads On Buildings, Mohammadtaghi Moravej Jun 2018

Investigating Scale Effects On Analytical Methods Of Predicting Peak Wind Loads On Buildings, Mohammadtaghi Moravej

FIU Electronic Theses and Dissertations

Large-scale testing of low-rise buildings or components of tall buildings is essential as it provides more representative information about the realistic wind effects than the typical small scale studies, but as the model size increases, relatively less large-scale turbulence in the upcoming flow can be generated. This results in a turbulence power spectrum lacking low-frequency turbulence content. This deficiency is known to have significant effects on the estimated peak wind loads.

To overcome these limitations, the method of Partial Turbulence Simulation (PTS) has been developed recently in the FIU Wall of Wind lab to analytically compensate for the effects of …


Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao Jan 2018

Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao

Honors Undergraduate Theses

Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment. …


Highly Vented Truss Wall Honeycomb Structures, David J. Sypeck Dec 2017

Highly Vented Truss Wall Honeycomb Structures, David J. Sypeck

Publications

A vented honeycomb structure with a plurality of honey­comb cells arranged in a hierarchical order and having a plurality of truss walls, each truss wall including a plurality of members. The vented honeycomb structure is fabricated by joining a plurality of sheets of trusses using any one of an expansion, a corrugation, and a slotting process. Fabri­cation can also occur by deposition, casting, additive, extru­sion, or aligning and joining methods. The honeycomb cells, truss walls, truss wall openings, and truss wall members can be functionally graded.


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Structural Behavior Of Inflatable, Reinforced, Braided, Tubular Members, Joshua Clapp Aug 2017

Structural Behavior Of Inflatable, Reinforced, Braided, Tubular Members, Joshua Clapp

Electronic Theses and Dissertations

The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) system being developed by the National Aeronautics and Space Administration (NASA) is an inflatable structure composed of multiple, concentric, pressurized tori, load straps, and a thermal protection system. The HIAD overcomes limitations inherent with the use of rigid decelerators since the deployed diameter is much larger than the packed size, which makes it an enabling technology for new opportunities in space exploration. The HIAD is designed to decelerate and protect spacecraft during atmospheric re-entry. The objective of this research was to improve understanding of structural behavior of HIAD components through material testing, structural testing …


Hazard Assessment Of Meteoroid Impact For The Design Of Lunar Habitats, Herta Paola Montoya, Shirley Dyke, Julio A. Ramirez, Antonio Bobet, H. Jay Melosh, Daniel Gomez Aug 2017

Hazard Assessment Of Meteoroid Impact For The Design Of Lunar Habitats, Herta Paola Montoya, Shirley Dyke, Julio A. Ramirez, Antonio Bobet, H. Jay Melosh, Daniel Gomez

The Summer Undergraduate Research Fellowship (SURF) Symposium

The design of self-sustaining lunar habitats is a challenge primarily due to the Moon’s lack of atmospheric protection and hazardous environment. To assure safe habitats that will lead to further lunar and space exploration, it is necessary to assess the different hazards faced on the Moon such as meteoroid impacts, extreme temperatures, and radiation. In particular, meteoroids pose a risk to lunar structures due to their high frequency of occurrence and hypervelocity impact. Continuous meteoroid impacts can harm structural elements and vital equipment compromising the well-being of lunar inhabitants. This study is focused on the hazard conceptualization and quantification of …


The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney Feb 2017

The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney

Master's Theses

While composite structures exhibit exceptional strength and weight saving possibilities for engineering applications, sometimes their overall cost and/or material performance can limit their usage when compared to conventional structural materials. Meanwhile ‘biocomposites’, composite structures consisting of natural fibers (i.e. bamboo fibers), display higher cost efficiency and unique structural benefits such as ‘sustainability’. This analysis will determine if the integration of these two different types of composites are beneficial to the overall structure. Specifically, the structure will consist of a one internal bamboo veneer biocomposite ply; and two external carbon fiber weave composite plies surrounding the bamboo biocomposite. To acquire results …


Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins Jan 2017

Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins

Theses and Dissertations--Civil Engineering

The Analytical Strip Method (ASM) for the analysis of thin cylindrical shells is presented in this dissertation. The system of three governing differential equations for the cylindrical shell are reduced to a single eighth order partial differential equation (PDE) in terms of a potential function. The PDE is solved as a single series form of the potential function, from which the displacement and force quantities are determined. The solution is applicable to isotropic, generally orthotropic, and laminated shells. Cylinders may have simply supported edges, clamped edges, free edges, or edges supported by isotropic beams. The cylindrical shell can be stiffened …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Expedient Airfield Runway Repair Using Folded Fiberglass Mat, Christopher Y. Tuan, Willaim C. Dass Jan 2016

Expedient Airfield Runway Repair Using Folded Fiberglass Mat, Christopher Y. Tuan, Willaim C. Dass

Department of Civil and Environmental Engineering: Faculty Publications

For expedient airfield runway repair, the US Air Force has developed a folded fiberglass mat to cover craters repaired with a well-compacted granular base material. The objective of this study was to evaluate the adequacy of using polymer plugs to anchor the mat to a repaired asphalt pavement for heavy aircraft operations. The effort consisted of materials testing, field experiments and analytical modeling. An 89,800-kg (198,000-pound) load cart having the footprint of a single C-5 main gear was pulled on a mat with wheels locked to simulate full braking forces. Anchor bushings were instrumented to measure anchor loads. A simplified …


Shape Memory Behavior Of Single Crystal And Polycrystalline Ni-Rich Nitihf High Temperature Shape Memory Alloys, Sayed M. Saghaian Jan 2015

Shape Memory Behavior Of Single Crystal And Polycrystalline Ni-Rich Nitihf High Temperature Shape Memory Alloys, Sayed M. Saghaian

Theses and Dissertations--Mechanical Engineering

NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing.

Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, …


Post-Failure Capacity Of Built-Up Steel Members, Matthew H. Hebdon Mar 2014

Post-Failure Capacity Of Built-Up Steel Members, Matthew H. Hebdon

Purdue Road School

Mechanically fastened built-up steel members have long been known to possess internal member redundancy and, as a result, multiple load paths which can be exploited to increase their functional life. Internal redundancy provides the ability to resist total member failure in the event of a fracture of an individual component. However, there is little experimental data in the literature regarding post-fracture capacity in terms of strength and subsequent fatigue life. The experimental study currently underway will provide needed information on parameters that affect the ability of built- up members to arrest a fracture as well as the available remaining fatigue …


Post-Fracture Capacity Of Railroad Flat Car Bridges, Teresa L. Washeleski Mar 2014

Post-Fracture Capacity Of Railroad Flat Car Bridges, Teresa L. Washeleski

Purdue Road School

Railroad flatcars (RRFCs) are a convenient option to replace existing deteriorating bridge structures on low-volume roads. They are typically used as the bridge superstructure by placing two or more flatcars side-by-side to achieve the desired bridge width. Utilizing RRFCs as a bridge allows for rapid construction and greater cost savings compared to traditional practices. These benefits make them an attractive solution for rural communities in Indiana, as well as other states.

Uncertainty remains about the response under higher loads than could be easily achieved in the field and the level of redundancy of railroad flatcar bridges. Using RRFCs as bridges …


Mode I Fracture Toughness Of Eight-Harness-Satin Carbon Cloth Weaves For Co-Cured And Post-Bonded Laminates, Josh E. Smith Dec 2013

Mode I Fracture Toughness Of Eight-Harness-Satin Carbon Cloth Weaves For Co-Cured And Post-Bonded Laminates, Josh E. Smith

Master's Theses

Mode I interlaminar fracture of 3k 8-Harness-Satin Carbon cloth, with identical fill and weft yarns, pre-impregnated with Newport 307 resin was investigated through the DCB test (ASTM D5528). Crack propagations along both the fill and weft yarns were considered for both post-bonded (co-bonded) and co-cured laminates. A patent-pending delamination insertion method was compared to the standard Teflon film option to assess its applicability to mode I fracture testing. The Modified Beam Theory, Compliance Calibration method, and Modified Compliance Calibration method were used for comparative purposes for these investigations and to evaluate the validity of the proposed Equivalent Stiffness (EQS) method. …


An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand Dec 2013

An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand

Masters Theses

This thesis outlines the development of computational modeling tools used to predict the elastic properties of composite lamina from representative volume elements (RVE) using numerical methods. The homogenization approach involves the use of Gauss’s Theorem to simply the average volumetric strain integral into a surface integral containing which is defined by surface displacements and their direction. Simulations of RVEs under specific loading conditions (longitudinal tension or shear and transverse tension or shear) are then performed in the software package ABAQUS to obtain the surface displacements. It was found that obtaining quality meshes and applying periodic boundary conditions for each RVE …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jul 2013

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Florin Bobaru Ph.D.

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …


Fatigue Testing And Data Analysis Of Welded Steel Cruciform Joints, Alina Shrestha May 2013

Fatigue Testing And Data Analysis Of Welded Steel Cruciform Joints, Alina Shrestha

University of New Orleans Theses and Dissertations

In this study, ABS Publication 115, “Guidance on Fatigue Assessment of Offshore Structures” is briefly reviewed. Emphasis is on the S-N curves based fatigue assessment approach of non-tubular joints, and both size and environment effects are also considered. Further, fatigue tests are performed to study the fatigue strength of load-carrying and non-load-carrying steel cruciform joints that represent typical joint types in marine structures. The experimental results are then compared against ABS fatigue assessment methods, based on nominal stress approach, which demonstrates a need for better fatigue evaluation parameter. A good fatigue parameter by definition should be consistent and should correlate …


Elastic–Plastic Analysis And Strength Evaluation Of Adhesive Joints In Wind Turbine Blades, Yi Hua, Ananth Ram Mahanth Kasavajhala, Linxia Gu Jan 2013

Elastic–Plastic Analysis And Strength Evaluation Of Adhesive Joints In Wind Turbine Blades, Yi Hua, Ananth Ram Mahanth Kasavajhala, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this paper is to investigate the performance of adhesive joints of carbon/epoxy wind turbine blade subjected to combined bending and tension loadings through finite element method. The influence of adhesive material properties and geometrical details including fillet and imperfections was examined in terms of interlaminar stresses in the adhesive layer. The variation of stress intensity with change in adhesive shear modulus has also been investigated, while contour integral method was used for evaluating the stress intensity factors (SIF) at the imperfection tip. Furthermore, the strength of the joint was assessed through the crack initiation and propagation analysis. …


The Effect Of Sensor Mass, Sensor Location, And Delamination Location Of Different Composite Structures Under Dynamic Loading, Albert Darien Liu Jan 2013

The Effect Of Sensor Mass, Sensor Location, And Delamination Location Of Different Composite Structures Under Dynamic Loading, Albert Darien Liu

Master's Theses

This study investigated the effect of sensor mass, sensor location, and delamination location of different composite structures under dynamic loading. The study pertains to research of the use of accelerometers and dynamic response as a cost-effective and reliable method of structural health monitoring in composite structures. The composite structures in this research included carbon fiber plates, carbon fiber-foam sandwich panels, and carbon-fiber honeycomb sandwich panels. The composite structures were manufactured with the use of a Tetrahedron MTP-8 heat press. All work was conducted in the Cal Poly Aerospace Structures/Composites Laboratory. Initial delaminations were placed at several locations along the specimen, …


The Effects Of Damage Arrestment Devices In Composite Plate Sandwiches With Fastener Holes, Mark Anderson, Nancy Hung Choy, Lacey Jones, Rita Kourskaya Jun 2011

The Effects Of Damage Arrestment Devices In Composite Plate Sandwiches With Fastener Holes, Mark Anderson, Nancy Hung Choy, Lacey Jones, Rita Kourskaya

Aerospace Engineering

Composite materials such as a carbon fiber are used in a variety of new technologies including aircraft, spacecraft, and motor vehicles. Carbon fiber has a high strength to weight ratio, a key advantage over other material options. This report discusses the use of composite damage arrestment devices (DADs) in composite sandwich panels with a foam core. There are three different curing cycles tested for the DADs: pressure only, vacuum only, and vacuum with 1000 lbs of pressure. Using a Tetrahedron Heat Press to cure the composite specimen and an Instron Machine to perform tensile testing, data was collected for each …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jan 2010

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …