Open Access. Powered by Scholars. Published by Universities.®

Multi-Vehicle Systems and Air Traffic Control Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 15 of 15

Full-Text Articles in Multi-Vehicle Systems and Air Traffic Control

Assessing The Performance Of A Particle Swarm Optimization Mobility Algorithm In A Hybrid Wi-Fi/Lora Flying Ad Hoc Network, William David Paredes Jan 2023

Assessing The Performance Of A Particle Swarm Optimization Mobility Algorithm In A Hybrid Wi-Fi/Lora Flying Ad Hoc Network, William David Paredes

UNF Graduate Theses and Dissertations

Research on Flying Ad-Hoc Networks (FANETs) has increased due to the availability of Unmanned Aerial Vehicles (UAVs) and the electronic components that control and connect them. Many applications, such as 3D mapping, construction inspection, or emergency response operations could benefit from an application and adaptation of swarm intelligence-based deployments of multiple UAVs. Such groups of cooperating UAVs, through the use of local rules, could be seen as network nodes establishing an ad-hoc network for communication purposes.

One FANET application is to provide communication coverage over an area where communication infrastructure is unavailable. A crucial part of a FANET implementation is …


A Machine Learning Framework For Automatic Speech Recognition In Air Traffic Control Using Word Level Binary Classification And Transcription, Fowad Shahid Sohail Sep 2022

A Machine Learning Framework For Automatic Speech Recognition In Air Traffic Control Using Word Level Binary Classification And Transcription, Fowad Shahid Sohail

Theses and Dissertations

Advances in Artificial Intelligence and Machine learning have enabled a variety of new technologies. One such technology is Automatic Speech Recognition (ASR), where a machine is given audio and transcribes the words that were spoken. ASR can be applied in a variety of domains to improve general usability and safety. One such domain is Air Traffic Control (ATC). ASR in ATC promises to improve safety in a mission critical environment. ASR models have historically required a large amount of clean training data. ATC environments are noisy and acquiring labeled data is a difficult, expertise dependent task. This thesis attempts to …


Satellite Constellation Deployment And Management, Joseph Ryan Kopacz Jan 2020

Satellite Constellation Deployment And Management, Joseph Ryan Kopacz

Electronic Theses and Dissertations

This paper will review results and discuss a new method to address the deployment and management of a satellite constellation. The first two chapters will explorer the use of small satellites, and some of the advances in technology that have enabled small spacecraft to maintain modern performance requirements in incredibly small packages.

The third chapter will address the multiple-objective optimization problem for a global persistent coverage constellation of communications spacecraft in Low Earth Orbit. A genetic algorithm was implemented in MATLAB to explore the design space – 288 trillion possibilities – utilizing the Satellite Tool Kit (STK) software developers kit. …


A Hybrid Tabu/Scatter Search Algorithm For Simulation-Based Optimization Of Multi-Objective Runway Operations Scheduling, Bulent Soykan Jul 2016

A Hybrid Tabu/Scatter Search Algorithm For Simulation-Based Optimization Of Multi-Objective Runway Operations Scheduling, Bulent Soykan

Engineering Management & Systems Engineering Theses & Dissertations

As air traffic continues to increase, air traffic flow management is becoming more challenging to effectively and efficiently utilize airport capacity without compromising safety, environmental and economic requirements. Since runways are often the primary limiting factor in airport capacity, runway operations scheduling emerge as an important problem to be solved to alleviate flight delays and air traffic congestion while reducing unnecessary fuel consumption and negative environmental impacts. However, even a moderately sized real-life runway operations scheduling problem tends to be too complex to be solved by analytical methods, where all mathematical models for this problem belong to the complexity class …


Adaptive Automation Design And Implementation, Jason M. Bindewald Sep 2015

Adaptive Automation Design And Implementation, Jason M. Bindewald

Theses and Dissertations

Automations allow us to reduce the need for humans in certain environments, such as auto-pilot features on unmanned aerial vehicles. However, some situations still require human intervention. Adaptive automation is a research field that enables computer systems to adjust the amount of automation by taking over tasks from or giving tasks back to the user. This research develops processes and insights for adaptive automation designers to take theoretical adaptive automation ideas and develop them into real-world adaptive automation system. These allow developers to design better automation systems that recognize the limits of computers systems, enabling better designs for systems in …


Intelligent Water Drops Algorithm For Coordinating Between Cluster Spacecraft In A Communications-Denied Environment, Jeremy Straub Jan 2015

Intelligent Water Drops Algorithm For Coordinating Between Cluster Spacecraft In A Communications-Denied Environment, Jeremy Straub

Jeremy Straub

This paper presents a modification of Shah-Hosseini’s Intelligent Water Drops (IWD) technique that can be utilized for collaborative control of multiple spacecraft in environments where communications are limited, intermittent or denied. It presents Shah- Hosseini’s base IWD algorithm as well as refinements thereof, which simplify it, making it more suitable for more computationally constrained environments (such as small spacecraft and UAVs). A framework for testing the proposed approach as well as several implementation impediments are discussed.


The Critical Role Of Cubesat Spacecraft In A Multi-Tier Mission For Mars Exploration, Jeremy Straub Nov 2014

The Critical Role Of Cubesat Spacecraft In A Multi-Tier Mission For Mars Exploration, Jeremy Straub

Jeremy Straub

A multi-tier architecture is under development (with similar craft heterogeneity to Fink's work on ‘tier scalable’ missions) which will facilitate autonomous local control of multiple heterogeneous craft. This mission architecture has been developed with a Mars mission in mind and has included CubeSats in a variety of critical mission roles.

Two concepts will be presented: the addition of CubeSats to a larger-scale multi-tier mission, where the CubeSats serve a supporting role and a mission driven by CubeSat orbital capabilities. In the first, CubeSats are utilized to augment the area of spatial coverage that can be obtained and the temporal coverage …


The Multi-Tier Mission Architecture And A Different Approach To Entry, Descent And Landing, Jeremy Straub Jun 2013

The Multi-Tier Mission Architecture And A Different Approach To Entry, Descent And Landing, Jeremy Straub

Jeremy Straub

Planetary missions are generally very well planned out. Where the spacecraft will be deployed, what it will do there and in what order are generally determined before launch. While some allowance is made for greater depth exploration of scientifically interesting items identified during the investigation, a successful mission is (generally) one that doesn’t deviate significantly from its planning. When sending an initial mission to an unsurveyed planet or moon, however, this approach is not suitable. Current space technology provides the capability to send a combined survey and lander mission (instead of conducting an initial survey mission and following it up …


Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub Jun 2013

Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub

Jeremy Straub

Small spacecraft operating outside of Earth orbit are significantly constrained by the communica- tions link available to them. This is particularly true for stand-alone craft that must rely on their own antenna and transmission systems (for which gain and available power generation are limited by form factor); it is also applicable to ‘hitchhiker’-style missions which may be able to utilize (quite likely very limited amounts of) time on the primary spacecraft’s communications equip- ment for long-haul transmission.

This poster presents the adaptation of the Model-Based Transmission Reduction (MBTR) frame- work’s Model-Based Data Analysis (MBDA) component for use on an interplanetary …


Desktop Warfare: Robotic Collaboration For Persistent Surveillance, Situational Awareness And Combat Operations, Jeremy Straub May 2013

Desktop Warfare: Robotic Collaboration For Persistent Surveillance, Situational Awareness And Combat Operations, Jeremy Straub

Jeremy Straub

Robotic sensing and weapons platforms can be controlled from a desktop workstation on the other side of the planet from where combat is occurring. This minimizes the potential for injury to soldiers and increases operational productivity. Significant work has been undertaken and is ongoing related to the autonomous control of battlefield sensing and warfighting systems. While many aspects of these operations can be performed autonomously, in some cases it is necessary (due to technical limitations) or desirable (due to legal or political implications) to involve humans in the low-level decision making. This paper reviews a number of specific applications where …


A Human Proximity Operations System Test Case Validation Approach, Justin Huber, Jeremy Straub Mar 2013

A Human Proximity Operations System Test Case Validation Approach, Justin Huber, Jeremy Straub

Jeremy Straub

A Human Proximity Operations System (HPOS) poses numerous risks in a real world environment. These risks range from mundane tasks such as avoiding walls and fixed obstacles to the critical need to keep people and processes safe in the context of the HPOS’s situation-specific decision making. Validating the performance of an HPOS, which must operate in a real-world environment, is an ill posed problem due to the complexity that is introduced by erratic (non-computer) actors. In order to prove the HPOS’s usefulness, test cases must be generated to simulate possible actions of these actors, so the HPOS can be shown …


Multi-Tier Exploration Concept Demonstration Mission, Jeremy Straub May 2012

Multi-Tier Exploration Concept Demonstration Mission, Jeremy Straub

Jeremy Straub

A multi-tier, multi-craft mission architecture has been proposed but, despite its apparent promise, limited use and testing of the architecture has been conducted. This paper proposes and details a mission concept and its implementation for testing this architecture in the terrestrial environment. It is expected that this testing will allow significant refinement of the proposed architecture as well as providing data on its suitability for use in both terrestrial and extra-terrestrial applications. Logistical and technical challenges with this testing are discussed.


Wide Area Search And Engagement Simulation Validation, Michael J. Marlin Mar 2007

Wide Area Search And Engagement Simulation Validation, Michael J. Marlin

Theses and Dissertations

As unmanned aerial vehicles (UAVs) increase in capability, the ability to refuel them in the air is becoming more critical. Aerial refueling will extend the range, shorten the response times, and extend loiter time of UAVs. Executing aerial refueling autonomously will reduce the command and control, logistics, and training efforts associated with fielding UAV systems. Currently, the Air Force Research Lab is researching the various technologies required to conduct automated aerial refueling (AAR). One of the required technologies is the ability to autonomously rendezvous with the tanker. The goal of this research is to determine the control required to fly …


Analysis For Cooperative Behavior Effectiveness Of Autonomous Wide Area Search Munitions, Sang M. Park Aug 2002

Analysis For Cooperative Behavior Effectiveness Of Autonomous Wide Area Search Munitions, Sang M. Park

Theses and Dissertations

The purpose of this study is to investigate how a simulation model can accurately represent the performance of the autonomous wide area search munitions, and to find the effectiveness of the cooperative behavior on the autonomous munitions. Though it does not provide a practical solution for the development of the autonomous wide area search munitions, this research will show some meaningful allocations of the munitions tasks that are applicable to the development of the autonomous munitions. For the first phase, this thesis presents how accurately a simplified simulation model can represent a proposed weapon system by comparing the simulation results …


Investigation Of Cooperative Behavior In Autonomous Wide Search Munitions, Robert E. Dunkel Iii Mar 2002

Investigation Of Cooperative Behavior In Autonomous Wide Search Munitions, Robert E. Dunkel Iii

Theses and Dissertations

The purpose of this research is to investigate the effectiveness of wide-area search munitions in various scenarios using different cooperative behavior algorithms. The general scenario involves multiple autonomous munitions searching for an unknown number of targets of different priority in unknown locations. Three cooperative behavior algorithms are used in each scenario: no cooperation, cooperative attack only, and cooperative classification and attack. In the cooperative cases, the munitions allocate tasks on-line as a group, using linear programming techniques to determine the optimum allocation. Each munition provides inputs to the task allocation routine in the form of probabilities of successfully being able …