Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Propulsion and Power

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 122

Full-Text Articles in Aerodynamics and Fluid Mechanics

Analysis Of An Electrospray Thruster With A Concave Propellant Meniscus, Adam Nicholas Huller Dec 2023

Analysis Of An Electrospray Thruster With A Concave Propellant Meniscus, Adam Nicholas Huller

Masters Theses

The low thrust, high specific impulse, and low mass of electrospray thrusters (ETs) make them ideal for maneuvering nanosatellites, especially with the new requirement to deorbit a satellite within five years of completing its mission. These innovative thrusters use electrohydrodynamic principles of electrospray (ES) to provide thrust. These principles have been subject to much research over the past decade, though much more research is needed to fully understand the underlying physics of these thrusters. The first part of this study establishes a procedure for analyzing the theoretical thrust performance of an ET, by using propellant properties and well-documented ES scaling …


The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow Jul 2023

The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow

Doctoral Dissertations and Master's Theses

Rocket Based Combined Cycle (RBCC) engines have been theorized as a possible means of powering launch vehicles and high-speed atmospheric vehicles. By incorporating aspects of both air-breathing and rocket propulsion, RBCC engines promise up to a 230 % increase in specific impulse over traditional chemical rocket propulsion by entraining a secondary flow of atmospheric air and mixing it with the exhaust of a rocket motor. Students within the Embry-Riddle Future Space Explorers and Developers Society (ERFSEDS) identified a
problem of excessive heating and structural failure of the mixing duct during launch and transonic flight of a student-built flight test vehicle. …


Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield May 2023

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield

Masters Theses

All combustion systems from large scale power plants to the engines of cars to gas turbines in aircraft are looking for new fuel sources. Recently, clean energy for aviation has come into the foreground as an important issue due to the environment impacts of current combustion methods and fuels used. The aircraft industry is looking towards hydrogen as a new, powerful, and clean fuel of the future. However there are several engineering and scientific challenges to overcome before hydrogen can be deployed into the industry. These issues
range from storing the hydrogen in a viable cryogenic form for an aircraft …


Superfly Amphibian, Devonte Andrews, Ahmed Hamza, Kwesi Onumah, Eva Sanchez Apr 2023

Superfly Amphibian, Devonte Andrews, Ahmed Hamza, Kwesi Onumah, Eva Sanchez

Senior Design Project For Engineers

Following a Short Takeoff and Landing (STOL) mission profile, this seaplane is designed to carry 19 passengers and 1 flight crew with a range of 200 nautical miles. The seaplane is equipped with two turbo-prop engines and is economically comparable to current seaplanes in terms of servicing and operating expenses. The aircraft is capable of operating in remote locations with limited infrastructure due to its STOL abilities, allowing for increased access to difficult-to-reach areas. The seaplane's design incorporates modern materials and technologies to enhance efficiency, safety, and comfort for passengers and crew. The aircraft's versatility and cost-effectiveness make it an …


On The Simulation Of Supersonic Flame Holder Cavities With Openfoam, Zachary Chapman Jan 2023

On The Simulation Of Supersonic Flame Holder Cavities With Openfoam, Zachary Chapman

Electronic Theses and Dissertations

One of the next major advancements in the aerospace industry will be hypersonic flight. However, to achieve hypersonic flight, propulsion systems capable of reaching hypersonic speeds need to be developed. One of the more promising hypersonic propulsion systems is the scramjet engine, however, several problems still need to be explored before reliable scramjet engines can be produced, the biggest being keeping the engine ignited. This has led to the use of flame holder cavities to create a region of subsonic flow within the engine to allow combustion to occur. High experimental costs make the use of computational fluid dynamic (CFD) …


Noise And Propulsive Efficiency Interactions For Rotors And Propellers At Constant Thrust, Riccardo Roiati Mr. Dec 2022

Noise And Propulsive Efficiency Interactions For Rotors And Propellers At Constant Thrust, Riccardo Roiati Mr.

Doctoral Dissertations and Master's Theses

In the emerging market of Advanced Air Mobility (AAM), aerospace companies have been designing and prototyping electric and hybrid vehicles to revolutionize travel. These vehicles must have low noise and particulate emissions while also having enough propulsive efficiency to complete the mission. This thesis aims to study the relationship between noise and propulsive efficiency as related to any aircraft equipped with an electric motor and a variable pitch rotor/propeller. The combination of the electric motor with the variable pitch propeller/rotor allows for a decoupled rotational speed and torque generation, meaning that the electric motor can generate the same amount of …


Quasi 1d Modelling Of A Scramjet Engine Cycle Using Heiser-Pratt Approach, Asmaa Chakir Dec 2022

Quasi 1d Modelling Of A Scramjet Engine Cycle Using Heiser-Pratt Approach, Asmaa Chakir

Theses and Dissertations

Scramjet engines are key for sustained hypersonic flights. Analytic models play a critical role in the preliminary design of a scramjet engine configuration. The objective of this research is to develop and validate a quasi-1D model for the scramjet engine encompassing inlet, isolator and combustor, to evaluate the impact of flight conditions and design parameters on the engine functionality. The model is developed assuming isentropic flow in the inlet with a single turn; modified Fanno-flow equations in the isolator that account for the area change of the core flow; and the combustor is modeled using Heiser-Pratt equations accounting for the …


Controller Platform Design And Demonstration For An Electric Aircraft Propulsion Driv, Rosten Sweeting Aug 2022

Controller Platform Design And Demonstration For An Electric Aircraft Propulsion Driv, Rosten Sweeting

Graduate Theses and Dissertations

With the growth in the aerospace industry there has been a trend to optimize the performance of an aircraft by reducing fuel consumption and operational cost. Recent advancements in the field of power electronics have pushed towards the concepts of hybrid electric aircraft also known as more electrical aircrafts. In this work, a custom controller board for an electric aircraft propulsion drive was designed to drive a permanent magnet synchronous motor. Design of the controller board required knowledge of the topology selection and power module selections. Simulations of the system were performed using MATLAB/Simulink to analyze the overall performance of …


Direct Simulation And Reduced-Order Modeling Of Premixed Flame Response To Acoustic Modulation, Zheng Qiao May 2022

Direct Simulation And Reduced-Order Modeling Of Premixed Flame Response To Acoustic Modulation, Zheng Qiao

Theses and Dissertations

This dissertation introduces a general, predictive and cost-efficient reduced-order modeling (ROM) technique for characterization of flame response under acoustic modulation. The model is built upon the kinematic flame model–G-equation to describe the flame topology and dynamics, and the novelties of the ROM lie in i) a procedure to create the compatible base flow that can reproduce the correct flame geometry and ii) the use of a physically-consistent acoustic modulation field for the characterization of flame response. This ROM addresses the significant limitations of the classical kinematic model, which is only applicable to simple flame configurations and relies on ad-hoc models …


Computational Comparison Of Dual Bell, Expansion-Deflection, And Aerospike Nozzles, Manuel R. Abadie Ardon Apr 2022

Computational Comparison Of Dual Bell, Expansion-Deflection, And Aerospike Nozzles, Manuel R. Abadie Ardon

Honors College Theses

In the search for a Single-Stage-to-Orbit rocket, Altitude Compensating Nozzles concepts (ACNs) have been proposed since the 1950s, but research has stalled despite the modern analysis tools available. These nozzle concepts offer optimum performance at two or more altitude settings. This research chose three of these concepts, these being the Dual Bell, Expansion-Deflection, and Aerospike, which were designed and analyzed at various pressure ratios (NPR=10,15,30,36,30,45) using Computational Fluid Dynamics (CFD) software FLUENT. Simulations generated pressure distributions along the nozzle wall, which allowed to calculate data values such as thrust coefficients. Nozzle efficiency is calculated from this data and used to …


A Non-Reacting Passive Scalar Comparison Of Starccm And Openfoam In A Supersonic Cavity Flame Holder, Thomas Nuese Jan 2022

A Non-Reacting Passive Scalar Comparison Of Starccm And Openfoam In A Supersonic Cavity Flame Holder, Thomas Nuese

Electronic Theses and Dissertations

The scramjet engine equipped with a modern-day airliner would allow for very quick travel across the United States. The major problem is that designing such an engine and testing it to make sure it is safe would cost millions if not billions of dollars. Computational fluid dynamics allows for complex designs to be tested but can still take many days, weeks, or even months to complete. With the use of computational fluid dynamics (CFD), the scramjet engine can be analyzed to determine a quicker way to test and develop a reliable configuration in addition to analyzing the effects of different …


Liquid Engine External Pressurizer (Leep), Emily Armbrust Jan 2022

Liquid Engine External Pressurizer (Leep), Emily Armbrust

Williams Honors College, Honors Research Projects

The purpose of this project is to take the current liquid rocket engine test stand design and implement an external pressurant instead of utilizing the 2-phase oxidizer vapor to pressurize itself and the fuel. The purpose behind the design is because the team is limited with the current design concerning burn time due to the amount of propellant they can put in the tanks and the pressure it can reach. The initial pressure is currently not held since there is no external input of mass into the tanks, as the propellant is leaving. Adding an external pressurant allow for the …


Cfd And Heat Transfer Analysis Of Rocket Cooling Techniques On An Aerospike Nozzle, Geoffrey Sullivan Jan 2022

Cfd And Heat Transfer Analysis Of Rocket Cooling Techniques On An Aerospike Nozzle, Geoffrey Sullivan

Electronic Theses and Dissertations

In recent years the development of rocket engines has been mainly focused on improving the engine cycle and creating new fuels. Rocket nozzle design has not been changed since the late 1960s. Recent needs for reliable and reusable rockets, as well as advancements in additive manufacturing, have brought new interest into the aerospike nozzle concept. This nozzle is a type of altitude adjusting nozzle that is up to 90% more efficient than bell nozzles at low altitudes and spends up to 30% less fuel. Since the nozzle body is submerged in the hot exhaust gasses it is difficult to keep …


Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra Oct 2021

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra

Doctoral Dissertations

Numerical modeling of advanced propulsion systems such as the Internal Combustion Engine (ICE) is of great interest to the community due to the magnitude of compute/algorithmic challenges. Fuel spray atomization, which determines the rate of fuel-air mixing, is a critical limiting process for the phenomena of combustion within ICEs. Fuel spray atomization has proven to be a formidable challenge for the state-of-the-art numerical models due to its highly transient, multi-scale, and multi-phase nature. Current models for primary atomization employ a high degree of empiricism in the form of model constants. This level of empiricism often reduces the art of predictive …


Blade Optimization For Ground Level Low Speed Wind Turbines, Ryan Foster Aug 2021

Blade Optimization For Ground Level Low Speed Wind Turbines, Ryan Foster

Symposium of Student Scholars

Low speed wind turbines can provide inexpensive and clean energy in areas where large scale wind power generation is impractical. The purpose of this research is to explore factors that affect the efficiency of low speed wind turbine blades. The factors that were tested include angle of attack, angle of twist, chord length, average thickness, span, and taper ratio. The goal is to determine a combination of these variables to enable maximum power extraction from a low wind speed source. These blade parameters are optimized for the Southeastern region of the United States. NOAA weather data at ground level are …


Active Control Of Coherent Structures In An Axisymmetric Jet, Michael Marques Goncalves Aug 2021

Active Control Of Coherent Structures In An Axisymmetric Jet, Michael Marques Goncalves

Doctoral Dissertations and Master's Theses

The primary objective of this work is to develop high-fidelity simulation model for jet noise control predictions and quantify the sound reduction when an external source frequency mode excitation is imposed on the jet flow. Whereas passive approaches using mixing devices, such as chevrons, have been shown to reduce low-frequency noise in jet engines, such approaches incur a performance penalty since they result in a reduced thrust. To avoid a performance penalty in reducing jet noise, the current work investigates a open-loop active noise control (ANC) system that utilizes a unsteady microjet actuator on the nozzle lip in the downstream …


Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph Jul 2021

Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph

Doctoral Dissertations and Master's Theses

We address the development of a dynamic-soaring capable unmanned aerial vehicle (UAV) optimized for long-duration flight with no on-board power consumption. The UAV’s aerodynamic properties are captured with the integration of variable fidelity aerodynamic analyses. In addition to this, a 6 degree-of-freedom flight simulation environment is designed to include the effects of atmospheric wind conditions. A simple flight control system aids in the development of the dynamic soaring maneuver. A modular design paradigm is adopted for the aircraft dynamics model, which makes it conducive to use the same environment to simulate other aircraft models. Multiple wind-shear models are synthesized to …


Perfromance Improvement Of High Bypass Turbofan Engine Through Optimization Of High-Pressure Compressor Blade – A Case Study, Vlad Mandzyuk May 2021

Perfromance Improvement Of High Bypass Turbofan Engine Through Optimization Of High-Pressure Compressor Blade – A Case Study, Vlad Mandzyuk

Symposium of Student Scholars

This research determines the relation between the High-Pressure Compressor (HPC) blade characteristics, compressor pressure ratio, and lift-to-drag ratio of a high bypass turbofan engine. Alterations in the HPC blades airfoil, span, chord, taper ratio, twist, aspect ratio, sweep, and angle of incidence are performed and their effect on the engine’s performance is observed. The metrics used to compare engine performance include thrust, specific thrust, exit velocity, fuel/air ratio, power, and efficiency. Parametric cycle analysis and computational fluid dynamics are performed to compare and validate findings. The goal of this study is to optimize the design of HPC to maximize the …


Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel May 2021

Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel

Doctoral Dissertations and Master's Theses

The accuracy of modern state-of-practice computational fluid dynamics approaches in predicting the cooling effectiveness of a perforated plate film-cooling arrangement is evaluated in ANSYS Fluent. A numerical investigation is performed using the Reynolds Averaged Navier Stokes equations and compared to NASA Glenn’s available Turbulent Heat Flux 4 experimental measurements collected as a part of the Transformational Tools and Technologies Project. A multiphysics approach to model heat conduction through the solid geometry is shown to offer significant improvements in wall temperature and film effectiveness prediction accuracy over the standard adiabatic wall approach. Additionally, localized gradient-based grid adaption is analyzed using the …


Sensitivity And Estimation Of Aerodynamic, Propulsion, And Inertial Parameters For Rudderless Aircraft Using Simulation, Jaden W. Thurgood May 2021

Sensitivity And Estimation Of Aerodynamic, Propulsion, And Inertial Parameters For Rudderless Aircraft Using Simulation, Jaden W. Thurgood

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A technique known as system identification is often used in aircraft design and testing to understand and validate the mathematical parameters that describe the aircrafts stability and handling characteristics. System identification can be thought of as the inverse of simulation. In the world of system identification, we have a physical system that we seek to understand in more detail by monitoring the system with an array of sensors. In short, we conduct tests of an aircraft while recording the inputs and response outputs. Then we take the input and output data and run it through an algorithm that seeks to …


Analysis On Fuel Options For Scramjet Engines With The Study To Lower The Starting Mach Number, Sumantra Luitel, Gagan Dangi May 2021

Analysis On Fuel Options For Scramjet Engines With The Study To Lower The Starting Mach Number, Sumantra Luitel, Gagan Dangi

Honors Theses

The main objectives of this report were to perform analysis of an ideal scramjet engine, to assess the influence of fuel on endurance factor, and the possibility of lowering the starting Mach Number of the scramjet. In the first part, an ideal cycle parametric analysis was conducted on three different fuels i.e. Liquid Hydrogen (LH2), Jet Propellant 7 (JP-7), and Rocket Propellant (RP-1), taking into account their availability, physical properties, current uses, and potential uses. The detailed analysis is done largely relying on a 9 step Parametric Cycle Analysis technique to study how fuel properties influence the variation of seven …


Ram Air-Turbine Of Minimum Drag, Raymond Akagi Mar 2021

Ram Air-Turbine Of Minimum Drag, Raymond Akagi

Master's Theses

The primary motivation for this work was to predict the conditions that would yield minimum drag for a small Ram-Air Turbine used to provide a specified power requirement for a small flight test instrument called the Boundary Layer Data System. Actuator Disk Theory was used to provide an analytical model for this work.

Classic Actuator Disk Theory (CADT) or Froude’s Momentum Theory was initially established for quasi-one-dimensional flows and inviscid fluids to predict the power output, drag, and efficiency of energy-extracting devices as a function of wake and freestream velocities using the laws of Conservations of Mass, Momentum, and Energy. …


Numerical Analysis Of Aerospike Engine Nozzle Performance At Various Truncation Lengths, Sam Dakka Dr, Oliver Dennison Jan 2021

Numerical Analysis Of Aerospike Engine Nozzle Performance At Various Truncation Lengths, Sam Dakka Dr, Oliver Dennison

International Journal of Aviation, Aeronautics, and Aerospace

The aerospike engine was first devised in the early 1960s where it provided new means of reaching orbit in a single stage. The paper aimes to demonstrate the viability of the technology by showcasing the increased nozzle thrust efficiency over the conventional bell nozzle. Various truncations were applied to the nozzle and each was subjected to two conditions, an over-expansion and near optimum condition. The nozzle contour was developed using the simple approximation method and was chosen to replicate that of the XRS-2200. This anchored the data, thereby validating the computational fluid dynamics (CFD) simulation. Simulations were completed for at …


Celebrating 90-Orbits Around The Sun, Stafford Air & Space Museum Sep 2020

Celebrating 90-Orbits Around The Sun, Stafford Air & Space Museum

Programs

In celebration of the 90th birthday of Oklahoma astronaut and aerospace legend, Gen. Thomas P. Stafford, the Stafford Air & Space Museum in Weatherford, Oklahoma is offering free admission on September 17th, 2020.


Unless stated otherwise within this repository collection, all materials are shared under the following Creative Commons license: [Creative Commons Attribution-NonCommercial 4.0 International License].


Conceptual Design Of A South Pole Carrier Pigeon Uav, Kendrick M. Dlima Jun 2020

Conceptual Design Of A South Pole Carrier Pigeon Uav, Kendrick M. Dlima

Master's Theses

Currently, the South Pole has a large data problem. It is estimated that 1.2 TB of data is being produced every day, but less than 500 GB of that data is being uploaded via aging satellites to researchers in other parts of the world. This requires those at the South Pole to analyze the data and carefully select the parts to send, possibly missing out on vital scientific information. The South Pole Carrier Pigeon will look to bridge this data gap.

The Carrier Pigeon will be a small unmanned aerial vehicle that will carry a 30 TB solid-state hard drive …


Studies Of Oval Tube And Fin Heat Exchangers, Phillip Nielsen May 2020

Studies Of Oval Tube And Fin Heat Exchangers, Phillip Nielsen

Undergraduate Student Works

Heating Ventilation and air-conditioning (HVAC) is a system which changes the temperature of the surroundings for the purposes of cooling or heating. This system requires energy to maintain a temperature difference from the outside temperature. Optimizing the flow over the evaporator coils is one way to increase the cooling efficiency. This will reduce the power required to have a sustainable system. Optimizing the flow to increase the energy transfer between the fins and the incoming air could result in a greater Coefficient of Performance (COP). This will be achieved by changing the geometry of the tubes for greater interaction with …


Arizona Hyperloop: The Fifth Mode Of Transportation, Eleanor Pahl, Matthieu Rada Apr 2020

Arizona Hyperloop: The Fifth Mode Of Transportation, Eleanor Pahl, Matthieu Rada

Discovery Day - Prescott

Arizona Hyperloop is a coalition between Embry-Riddle Aeronautical University and Arizona State University students competing in Elon Musk’s annual SpaceX Hyperloop Pod Competition. Hyperloop is the proposed “Fifth Mode of Transportation” - coined “a cross between a Concorde, a rail gun, and an air hockey table.” A hyperloop pod levitates and travels at nearly the speed of sound inside a vacuum tube, which eliminates air resistance. Musk hosts the annual competition to university students to encourage the evolution of urban transportation. The goal is to design, build, and race the fastest prototype pod at SpaceX’s mile-long test track in Hawthorne, …


Sae Aero West Heavy Lift Competition Team - Eaglenautics, Anthony Pirone, Evan Stuart, Jessica Millard, Nathaniel Scott Apr 2020

Sae Aero West Heavy Lift Competition Team - Eaglenautics, Anthony Pirone, Evan Stuart, Jessica Millard, Nathaniel Scott

Discovery Day - Prescott

ERAU’s SAE Aero Design West Competition team encourages students of all majors who have an interest in the design of heavy-lift cargo and passenger aircraft to design, build, and fly a large RC aircraft to meet a new set of regulations each competition year. Since the team, Eaglenautics, was founded in 2017 it has successfully been to competition once in April 2019 in California. The team’s aircraft flew 4 out of 5 flight rounds, passed all technical inspections, and is now on display in ERAU’s Aero-Fab in the AXFAB. The 2020 competition requirements are unique in that the cargo’s weight-to-volume …


Flame Stabilization Of A Premixed Jet In Vitiated Coflow, Tyler Owens Jan 2020

Flame Stabilization Of A Premixed Jet In Vitiated Coflow, Tyler Owens

Theses and Dissertations--Mechanical Engineering

Premixed staged combustion in gas turbine engines can reduce emissions by lowering peak flame temperatures but can also lead to different stability characteristics when compared to traditional combustors. High pressure ratio and subsequently high temperatures can lead to conditions suitable for both autoignition and premixed flame propagation in an environment where spatial fuel/air variations are present.

An experimental facility which issues a premixed jet into a coflowing vitiated mixture was studied to examine the stability behavior, resulting in a lifted flame. The effective ignition delay observed flame was much greater than homogeneous ignition delay calculations for the same conditions. It …


Active Fault-Tolerance Of The Unmanned Aerial Vehicle Automatic Control Systems, Vuong Anh Trung, Nguyen Van Thinh, Nguyen Duc Thanh, Nguyen Quang Vinh, Tran Thuan Hoang Jan 2020

Active Fault-Tolerance Of The Unmanned Aerial Vehicle Automatic Control Systems, Vuong Anh Trung, Nguyen Van Thinh, Nguyen Duc Thanh, Nguyen Quang Vinh, Tran Thuan Hoang

International Journal of Aviation, Aeronautics, and Aerospace

This paper presents an introductory overview of principles of the three-layer hierarchy of active fault-tolerance, providing, determination of the fault type with as many details as enough to get recoverable fault reason and failure toleration by flexible redundancy using; the conception of active fault-tolerant control in abnormal modes is described. Developed models and methods of a systematic approach to fault tolerance in the direction of the effective use of the signal, parametric and structural redundancies and selection of parrying tools. Performed experimental researches of the unmanned aerial vehicle (UAV) automatic control systems (ACS).