Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

2013

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 61

Full-Text Articles in Aerospace Engineering

Scheduling For A Small Satellite For Remote Sensed Data Collection, Donovan Torgerson, Christoffer Korvalnd, Jeremy Straub, Ronald Marsh Dec 2013

Scheduling For A Small Satellite For Remote Sensed Data Collection, Donovan Torgerson, Christoffer Korvalnd, Jeremy Straub, Ronald Marsh

Jeremy Straub

Small satellites, such as CubeSats, serve as excellent platforms for the collection of data that can be supplied to a geographic information system. To serve this need, they require a robust and lightweight task scheduler due to their limited onboard power production capabilities as well as internal space restrictions. Because of these constraints, schedules must be optimized; however, the scheduling optimization process must be performed using limited processing (CPU) power.

Several considerations must be taken into account in order to make a scheduler for these systems. This poster highlights requirements such as inter-dependency of onboard systems, and limited windows of …


Roofsat: Teaching Students Skills For Software Development For Gis Data Collection And Other Activities, Jeremy Straub, Ronald Marsh, Donovan Torgerson, Christoffer Korvald Dec 2013

Roofsat: Teaching Students Skills For Software Development For Gis Data Collection And Other Activities, Jeremy Straub, Ronald Marsh, Donovan Torgerson, Christoffer Korvald

Jeremy Straub

Small Spacecraft provide an excellent platform for the collection of geospatial data. In order to enable the low-cost creation of small remote sensing space-craft in a university environment, a training pathway for students is required. The Realistic Operational Ob-ject for Facilitating Software Assessment and Testing (RoofSat) serves to provide students with experience developing software for a small satellite platform typi-cal of those used for remote sensing missions. It al-lows software to be tested with hardware that re-sponds in a similar manner to that found on the satel-lite for a fraction of the cost of development. This poster details the goals …


Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin Dec 2013

Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin

Jeremy Straub

OpenOrbiter is a student project at the University of North Dakota to design and build a low cost1 and open-hardware / open-source software CubeSat2. The Ground Station is the user interface for operators of the satellite. The ground station software must manage spacecraft communications, track its orbital location , manage task assignment, provide security and retrieve the data from the spacecraft. This will be presented via a graphical user interface that allows a user to easily perform these tasks.


Testing And Integration Team Project Management, Tyler Leben, Jeremy Straub, Scott Kerlin Dec 2013

Testing And Integration Team Project Management, Tyler Leben, Jeremy Straub, Scott Kerlin

Jeremy Straub

The Testing and Integration Team plays an integral role in the development of the open source CubeSat known as Open Orbiter. Like any project, the Testing Team’s project can benefit from structure and management to effectively utilize it’s time and resources. CSCI 297 teaches the skills needed to turn a good idea into successful endeavor. By applying skills such as effective planning, setting milestones, dealing with changes and supervising to an actual project, Open Orbiter has transformed from a pipe dream to a real, obtainable goal. Doing this has turned learning about project management into more that just power points …


Openorbiter Payload Software, Tim Whitney, Kyle Goehner, Jeremy Straub, Scott Kerlin Dec 2013

Openorbiter Payload Software, Tim Whitney, Kyle Goehner, Jeremy Straub, Scott Kerlin

Jeremy Straub

The Payload Software team is responsible for developing the image processing and task decomposition systems on the Open Orbiter satellite1. The image processing software performs operations to enhance the quality of the images collected by the onboard camera, specifically, mosaicking, which takes multiple images and stitches them together to make a larger image and super resolution, which takes multiple low resolution images of the same area to produce a higher resolution image2,3,4. The task decomposition part of the system decomposes tasks defined by the user into jobs that then get sent to the operating system to be performed. This system …


Project Management For The Openorbiter Operating Software Team, Kelton Karboviak, Dayln Limesand, Michael Hlas, Eric Berg, Christoffer Korvald, Jeremy Straub, Ronald Marsh, Scott Kerlin Dec 2013

Project Management For The Openorbiter Operating Software Team, Kelton Karboviak, Dayln Limesand, Michael Hlas, Eric Berg, Christoffer Korvald, Jeremy Straub, Ronald Marsh, Scott Kerlin

Jeremy Straub

OpenOrbiter is producing a 1-U CubeSat spacecraft1 to facilitate the construction of low-cost2 spacecraft by others in the future. The Operating Software team is in charge of designing and creating the software that controls most of the CubeSat’s operations such as image capturing, storage management, and temperature sensing. The project management deliverables that we have worked on as a team are the Project Definition, Work Breakdown Structure, and the Project Schedule. The Project Definition defines exactly what our project team will be developing including, but not limited to, what the team is in charge of developing, what its not in …


Ground Station Software Team Project Management, Zach Maguire, Marshall Mattingly, Christoffer Korvald, Jeremy Straub, Scott Kerlin Dec 2013

Ground Station Software Team Project Management, Zach Maguire, Marshall Mattingly, Christoffer Korvald, Jeremy Straub, Scott Kerlin

Jeremy Straub

In CSCI 297 class we partake in learning the roles of software team leads and developers. With hands on activities that get us involved in what a real manager of a software team may do such as: defining a project, planning a project, developing a work breakdown structure, estimating the work, developing a project schedule, etc. This work is performed in the context of the OpenOrbiter project which seeks to build a low-cost spacecraft1 that can be produced with a parts budget of approxi-mately $5,0002 by schools worldwide. The ground station software team’s purpose within Open Orbiter project is to …


Software For Openorbiter, Christoffer Korvald, Jeremy Straub, Scott Kerlin, Ronald Marsh Dec 2013

Software For Openorbiter, Christoffer Korvald, Jeremy Straub, Scott Kerlin, Ronald Marsh

Jeremy Straub

The software development effort for the OpenOrbiter project consists of four teams: operating software development, payload software development, ground station software development and testing. These teams are designing and developing the software required to create a turn-key spacecraft design1 which can be produced at a price point of under USD $5,000 by faculty, students and researchers world-wide2. Through this process, students are gaining valuable real-world experience3,4 in areas of indicated interest5. Each team is headed by a team lead who is responsible for conducting weekly meetings and organizing the activities of the team. During the Fall, 2013 semester, team leads …


Payload Software Design And Development For A Remote Sensing Small Spacecraft, Kyle Goehner, Christoffer Korvald, Jeremy Straub, Ronald Marsh Dec 2013

Payload Software Design And Development For A Remote Sensing Small Spacecraft, Kyle Goehner, Christoffer Korvald, Jeremy Straub, Ronald Marsh

Jeremy Straub

Scheduling for a Small Satellite for Remote Sensed Data Collection


A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender Dec 2013

A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender

Doctoral Dissertations

Prandtl’s lifting line theory expanded the Kutta-Joukowski theorem to calculate the lift and induced drag of finite wings. The circulation distribution about a real wing was represented by a superposition of infinitesimal vortex filaments. From this theory, the optimum distribution of circulation was determined to be elliptical. A consequence of this theory led to the prediction that the elliptical chord distribution on a real fixed wing would provide the elliptical circulation distribution. The author applied the same line of reasoning to lift-producing rotating cylinders in order to determine the cylindrical geometry that would theoretically produce an elliptical circulation distribution. The …


Molecular Dynamics Model Of Carbon Nanotubes In Epon 862/Detda Polymer, Guttormur Arnar Ingvason Dec 2013

Molecular Dynamics Model Of Carbon Nanotubes In Epon 862/Detda Polymer, Guttormur Arnar Ingvason

Doctoral Dissertations and Master's Theses

The aerospace industry is interested in increasing the strength while reducing the weight of carbon fiber composite materials. Adding single walled carbon nanotubes (SWCNT) to a polymer matrix can achieve that goal by improving delamination properties of the composite. Due to the complexity of polymer molecules and the curing process, few 3-D Molecular Dynamics simulations of a polymer-SWCNT composite have been run. Our model runs on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), with a COMPASS (Condensed phase Optimized Molecular Potential for Atomistic Simulations Studies) potential to represent the interactions between the atoms of the polymer and the SWCNT. This …


High-Order Shock Capturing For Computational Aeroacoustics, Samuel Otto, Gregory Blaisdell Oct 2013

High-Order Shock Capturing For Computational Aeroacoustics, Samuel Otto, Gregory Blaisdell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Jet noise is not only an annoyance to passengers and communities near airports, it is a major contributor to hearing loss in veterans who served on aircraft carriers, as well as a significant limiting factor for the growth of commercial airlines. High-fidelity large eddy simulation (LES) is an important tool for analyzing and predicting jet noise; however the utilized non-dissipative high order finite difference schemes produce instabilities at shock waves. Schemes for capturing shock waves, however, are more dissipative and do a poor job preserving turbulent structures and acoustic waves. To maximize the strengths of both approaches, hybrid methods utilize …


Archaeological Remote Sensing: Exploring The Past From Space, Kel Markert Oct 2013

Archaeological Remote Sensing: Exploring The Past From Space, Kel Markert

Von Braun Symposium Student Posters

No abstract provided.


Ambient: Affordable Microsatellite Based Internet Access And Environmental Monitoring, Tyler Maddox Oct 2013

Ambient: Affordable Microsatellite Based Internet Access And Environmental Monitoring, Tyler Maddox

Von Braun Symposium Student Posters

No abstract provided.


Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng Oct 2013

Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng

Open Access Dissertations

By quantitating the amplitude of the unbounded stress, the continuum fracture mechanics defines the stress intensity factor K to characterize the stress and displacement fields in the vicinity of the crack tip, thereby developing the relation between the stress singularity and surface energy (energy release rate G). This G-K relation, assigning physical meaning to the stress intensity factor, makes these two fracture parameters widely used in predicting the onset of crack propagation. However, due to the discrete nature of the atomistic structures without stress singularity, there might be discrepancy between the failure prediction and the reality of nanostructured materials. Defining …


Traditional Boat Building: An Intersection Of Zanzibar’S Culture And Environment, Eric Levenson Oct 2013

Traditional Boat Building: An Intersection Of Zanzibar’S Culture And Environment, Eric Levenson

Independent Study Project (ISP) Collection

This study examined traditional boat building on Uzi Island as a manifestation of Zanzibar’s relationship of environment and culture. Information was gathered about traditional boat building practices, the resource use and management pertaining to boats, the cultural reliance on boats, and local views on environment and conservation. This information showed that the people of Uzi Island were dependent on the use of traditional boats to maintain their livelihood, however the tree types used for boat building are being over-harvested. This tension of culture and environment exposed the need for conservation of Zanzibar’s natural resources in a manner that does not …


Identifiability Of Additive, Time-Varying Actuator And Sensor Faults By State Augmentation, Jason M. Upchurch Oct 2013

Identifiability Of Additive, Time-Varying Actuator And Sensor Faults By State Augmentation, Jason M. Upchurch

Electrical & Computer Engineering Theses & Dissertations

Faults in dynamical systems can have serious safety and reliability implications. For example, actuator and sensor faults have been factors in past incidents and mishaps in many aerospace systems. A large body of research is devoted to developing methods to detect and identify actuator and sensor faults in such systems.

One fault detection and identification menthol employs state augmentation, whereby a set of time-varying faults of interest are modeled as outputs of exogenous linear, time-invariant systems and augmented to the state of the nominal system model. The resulting model represents the system dynamics due to a particular actuator-sensor fault configuration. …


Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Sep 2013

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and …


Tubular And Sector Heat Pipes With Interconnected Branches For Gas Turbine And/Or Compressor Cooling, Brian D. Reding Ii Sep 2013

Tubular And Sector Heat Pipes With Interconnected Branches For Gas Turbine And/Or Compressor Cooling, Brian D. Reding Ii

FIU Electronic Theses and Dissertations

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system …


A Model For Calculating Acoustic Gravity Wave Energy And Momentum Flux In The Mesosphere From Oh Airglow, Gary R. Swenson, Alan Z. Liu Sep 2013

A Model For Calculating Acoustic Gravity Wave Energy And Momentum Flux In The Mesosphere From Oh Airglow, Gary R. Swenson, Alan Z. Liu

Alan Z Liu

Acoustic gravity and tidal waves propagating in the mesosphere/lower thermosphere (80-110 km) perturb the airglow layer intensities. The OH airglow has recently been modeled to determine the relationship between the relative perturbed atmospheric density and temperature (ρ’/ ρ, T’/T) to the OH intensity ( I’OH/IOH ) at the OH emission altitudes [Swenson and Gardner, 1997]. A model is presented here which relates wave perturbed OH airglow to the wave energy and momentum flux as they propagate through the emission layer. The model is dependent on the wave horizontal and vertical wavelengths (or phase speed as related through the dispersion relationship), …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


Ramjet Combustion Chamber, Paul Cameron Stone Jun 2013

Ramjet Combustion Chamber, Paul Cameron Stone

Aerospace Engineering

A ramjet combustion chamber is designed and some initial assembly fabrication and test completed as a component of a ramjet graduate project for California Polytechnic State University, San Luis Obispo Supersonic Wind Tunnel. The combustor design is driven by a theoretical model created by a Cal Poly graduate student, Harrison Sykes. Temperature, pressure, and fuel flow will be measured.


Coupled Flow Field Simulations Of Charring Ablators With Nonequilibrium Surface Chemistry, Hicham Alkandry, Iain D. Boyd, Alexandre Martin Jun 2013

Coupled Flow Field Simulations Of Charring Ablators With Nonequilibrium Surface Chemistry, Hicham Alkandry, Iain D. Boyd, Alexandre Martin

Mechanical Engineering Faculty Publications

This paper describes the coupling of a Navier-Stokes solver to a material response code to simulate nonequilibrium gas-surface interactions. The Navier-Stokes solver used in this study is LeMANS, which is a three-dimensional computational fluid dynamics code that can simulate hypersonic reacting flows including thermo-chemical nonequilibrium effects. The material response code employed in this study is MOPAR, which uses the one-dimensional control volume nite-element method to model heat conduction and pyrolysis gas behavior. This coupling is demonstrated using a test case based on the Stardust sample return capsule. Coupled simulations are performed at three different trajectory conditions. The effects of the …


Volume Averaged Modeling Of The Oxidation Of Porous Carbon Fiber Material, Alexandre Martin Jun 2013

Volume Averaged Modeling Of The Oxidation Of Porous Carbon Fiber Material, Alexandre Martin

Mechanical Engineering Faculty Publications

Charring ablators remain the premium choice for space exploration missions that involve atmospheric re-entry. This type of ablative material is composed of a carbon matrix, usually made of fibers, which is then impregnated with a resin. During re-entry, the high heat flux produced by convective heating causes the material to chemically react. First, the resin pyrolyzes, and is vaporized into a gas that travels through the material, and is eventually ejected at the surface. Then, as the temperature rises, the surface of the porous matrix recess through ablative processes. For re-entry conditions typical of space exploration missions, this is mainly …


Flow-Tube Oxidation Experiments On The Carbon Preform Of Pica, Francesco Panerai, Alexandre Martin, Nagi N. Mansour, Steven A. Sepka, Jean Lachaud Jun 2013

Flow-Tube Oxidation Experiments On The Carbon Preform Of Pica, Francesco Panerai, Alexandre Martin, Nagi N. Mansour, Steven A. Sepka, Jean Lachaud

Mechanical Engineering Faculty Publications

Oxidation experiments on the carbon preform of a phenolic-impregnated carbon ablator were performed in the NASA Ames ow-tube reactor facility, at temperatures between 700 and 1300 K, under dry air gas at pressures between 103 and 104 Pa. Mass loss, volumetric recession and density changes were measured at different test conditions. An analysis of the diffusion/reaction competition within the porous material, based on the Thiele number, allowed us to identify low temperature and low pressure conditions to be dominated by in-depth volume oxidation. Experiments above 1000 K were found at transition conditions, where diffusion and reaction occur at similar scales. …


Multi-Dimensional Modeling Pyrolysis Gas Flow Inside Charring Ablators, Haoyue Weng, Alexandre Martin Jun 2013

Multi-Dimensional Modeling Pyrolysis Gas Flow Inside Charring Ablators, Haoyue Weng, Alexandre Martin

Mechanical Engineering Faculty Publications

Using an ablative thermal/material response code, the importance of three-dimensionality for modeling ablative test-article is addressed. In particular, the simulation of the pyrolysis gas flow inside a porous material is presented, using two different geometries. The effects of allowing the gas to flow out of the side wall are especially highlighted. Results show that the flow inside the test-article is complex, and that the 0D or 1D assumption made in most Material Response (MR) codes might not be valid for certain geometries.


Linear Model Estimation Of Nonlinear Systems Using Least-Squares Algorithm5, Alireza Rahrooh, Walter W. Buchanan, Remzi Seker Jun 2013

Linear Model Estimation Of Nonlinear Systems Using Least-Squares Algorithm5, Alireza Rahrooh, Walter W. Buchanan, Remzi Seker

Publications

This paper presents utilizes Least-Squares Algorithm to obtain more accurate linear models of nonlinear systems using parameter estimation. This approach generates an optimal linear model which is valid over a wide range of trajectories and converges to the desired steady-state value with no errors unlike the existing techniques. The proposed technique is very efficient and does not require storing the data. Therefore, it can easily be used and implemented with limited resources for undergraduate curriculum especially in underdeveloped countries. Most available techniques for linearization of nonlinear system are only valid about the operating point; furthermore, the knowledge of the operating …


The Multi-Tier Mission Architecture And A Different Approach To Entry, Descent And Landing, Jeremy Straub Jun 2013

The Multi-Tier Mission Architecture And A Different Approach To Entry, Descent And Landing, Jeremy Straub

Jeremy Straub

Planetary missions are generally very well planned out. Where the spacecraft will be deployed, what it will do there and in what order are generally determined before launch. While some allowance is made for greater depth exploration of scientifically interesting items identified during the investigation, a successful mission is (generally) one that doesn’t deviate significantly from its planning. When sending an initial mission to an unsurveyed planet or moon, however, this approach is not suitable. Current space technology provides the capability to send a combined survey and lander mission (instead of conducting an initial survey mission and following it up …


Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub Jun 2013

Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub

Jeremy Straub

Small spacecraft operating outside of Earth orbit are significantly constrained by the communica- tions link available to them. This is particularly true for stand-alone craft that must rely on their own antenna and transmission systems (for which gain and available power generation are limited by form factor); it is also applicable to ‘hitchhiker’-style missions which may be able to utilize (quite likely very limited amounts of) time on the primary spacecraft’s communications equip- ment for long-haul transmission.

This poster presents the adaptation of the Model-Based Transmission Reduction (MBTR) frame- work’s Model-Based Data Analysis (MBDA) component for use on an interplanetary …


Integrated Collision Avoidance System Sensor Evaluation Final Design Project, Alex F. Graebe, Bridgette S. Kimball, Drew T. Lavoise Jun 2013

Integrated Collision Avoidance System Sensor Evaluation Final Design Project, Alex F. Graebe, Bridgette S. Kimball, Drew T. Lavoise

Mechanical Engineering

Following the development of Aircraft Collision Avoidance Technology (ACAT) by the National Aeronautics and Space Administration (NASA), a need arose to transition the life-saving technology to aid the general aviation community. Considering the realistic cost of implementation, it was decided that the technology should be adapted to function on any smartphone, using that device as an end-to-end solution to sense, process, and alert the pilot to imminent threats. In September of 2012, the SAS (Sense and Survive) Senior Project Team at California Polytechnic University (Cal Poly), San Luis Obispo was assigned the task of using smartphone technology to accurately sense …