Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Aerospace Engineering

Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet May 2020

Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet

Electronic Theses and Dissertations

Unmanned Aerial Vehicles (UAVs) expand the available mission-space for a wide range of budgets. Using MATLAB, this project has developed a six degree of freedom (6DOF) simulation of UAV flight, an Extended Kalman Filter (EKF), and an algorithm for localizing radioactive sources using low-cost hardware. The EKF uses simulated low-cost instruments in an effort to estimate the UAV state throughout simulated flight.

The 6DOF simulates aerodynamics, physics, and controls throughout the flight and provides outputs for each time step. Additionally, the 6DOF simulation offers the ability to control UAV flight via preset waypoints or in realtime via keyboard input.

Using …


The Hilbert-Huang Transform: A Theoretical Framework And Applications To Leak Identification In Pressurized Space Modules, Kenneth R. Bundy Aug 2018

The Hilbert-Huang Transform: A Theoretical Framework And Applications To Leak Identification In Pressurized Space Modules, Kenneth R. Bundy

Electronic Theses and Dissertations

Any manned space mission must provide breathable air to its crew. For this reason, air leaks in spacecraft pose a danger to the mission and any astronauts on board. The purpose of this work is twofold: the first is to address the issue of air pressure loss from leaks in spacecraft. Air leaks present a danger to spacecraft crew, and so a method of finding air leaks when they occur is needed. Most leak detection systems localize the leak in some way. Instead, we address the identification of air leaks in a pressurized space module, we aim to determine the …


Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett Aug 2017

Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett

Electronic Theses and Dissertations

As Unmanned Aerial Vehicle (UAV), or “drone” applications expand, new methods for sensing, navigating and avoiding obstacles need to be developed. The project applies an Extended Kalman Filter (EKF) to a simulated quadcopter vehicle though Matlab in order to estimate not only the vehicle state but the world state around the vehicle. The EKF integrates multiple sensor readings from range sensors, IMU sensors, and radiation sensors and combines this information to optimize state estimates. The result is an estimated world map to be used in vehicle navigation and obstacle avoidance.

The simulation handles the physics behind the vehicle flight. As …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …