Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Effect Of Membrane Properties On The Carbonation Of Anion Exchange Membrane Fuel Cells, Yiwei Zheng, Lyzmarie Nicole Irizarry, Noor Ui Hassan, Eric R. Williams, Morgan Stefik, Jacob M. Lamanna, Daniel S. Hussey, Mustain E William Jan 2021

Effect Of Membrane Properties On The Carbonation Of Anion Exchange Membrane Fuel Cells, Yiwei Zheng, Lyzmarie Nicole Irizarry, Noor Ui Hassan, Eric R. Williams, Morgan Stefik, Jacob M. Lamanna, Daniel S. Hussey, Mustain E William

Faculty Publications

Anion exchange membrane fuel cells (AEMFC) are potentially very low-cost replacements for proton exchange membrane fuel cells. However, AEMFCs suffer from one very serious drawback: significant performance loss when CO2 is present in the reacting oxidant gas (e.g., air) due to carbonation. Although the chemical mechanisms for how carbonation leads to voltage loss in operating AEMFCs are known, the way those mechanisms are affected by the properties of the anion exchange membrane (AEM) has not been elucidated. Therefore, this work studies AEMFC carbonation using numerous high-functioning AEMs from the literature and it was found that the ionic conductivity of the …


Nano Oil Additives And Their Effect On Uh-60 Auxiliary Power Unit Performance, James Patrick Folk Jan 2016

Nano Oil Additives And Their Effect On Uh-60 Auxiliary Power Unit Performance, James Patrick Folk

Theses and Dissertations

This study is designed to research the tribological properties of nano oils developed by NanoPro MT and to determine their effects on fuel consumption in an UH-60 Blackhawk Auxiliary Power Unit (APU). For this work, two different nano oils were tested and compared against the performance of conventional oil. The first nano oil mixture contains proprietary nanodiamond particles and the second nano oil contains a mix of zinc sulfide, boron nitride, and graphene particles. Aeroshell 560 was used as the conventional oil and was blended with the nano particles to create both nano oils. This oil meets the military specifications …


Ni-Doped Sr2Fe1.5Mo0.5O6-Δ As Anode Materials For Solid Oxide Fuel Cells, Guoliang Xiao, Siwei Wang, Ye Lin, Zhibin Yang, Minfang Han, Fanglin Chen Jan 2014

Ni-Doped Sr2Fe1.5Mo0.5O6-Δ As Anode Materials For Solid Oxide Fuel Cells, Guoliang Xiao, Siwei Wang, Ye Lin, Zhibin Yang, Minfang Han, Fanglin Chen

Faculty Publications

10% Ni-doped Sr2Fe1.5Mo0.5O6-δ with A-site deficiency is prepared to induce in situ precipitation of B-site metals under anode conditions in solid oxide fuel cells. XRD, SEM and TEM results show that a significant amount of nano-sized Ni-Fe alloy metal phase has precipitated out from Sr1.9Fe1.4Ni0.1Mo0.5O6-δ upon reduction at 800C in H2. The conductivity of the reduced composite reaches 29 S cm−1 at 800C in H2. Furthermore, fuel cell performance of the composite anode Sr1.9 …


Performance Of Solid Oxide Iron-Air Battery Operated At 550°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang May 2013

Performance Of Solid Oxide Iron-Air Battery Operated At 550°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang

Faculty Publications

“Metal-air” batteries have garnered much attention in recent years due to their high intrinsic specific energy and use of inexhaustible and storage-free oxygen source -air- for the “metal-oxygen” reaction. In this study, we report theperformance of a new type of all solid-state “iron-air” battery operated at 550°C. The results show that CeO2 nanoparticles incorporated into the Fe-Fe3O4 redox-couple can improve the specific energy (Wh/kg) and round trip efficiency by 15% and 29%, respectively, over the baseline Fe-Fe3O4 battery. Use of supported Fe-Fe3O4 nanoparticles as the redox couple can increase the …


Accuracy, Cost And Performance Trade-Offs For Streaming Set-Wise Floating Point Accumulation On Fpgas, Krishna Kumar Nagar Jan 2013

Accuracy, Cost And Performance Trade-Offs For Streaming Set-Wise Floating Point Accumulation On Fpgas, Krishna Kumar Nagar

Theses and Dissertations

The set-wise summation operation is perhaps one of the most fundamental and widely used operations in scientific applications. In these applications, maintaining the accuracy of the summation is also important as floating point operations have inherent errors associated with them. Designing floating-point accumulators presents a unique set of challenges: double-precision addition is usually deeply pipelined and without special micro-architectural or data scheduling techniques, the data hazard that exists. There have been several efforts to design floating point accumulators and accurate summation architecture using different algorithms on FPGAs but these problems have been dealt with separately. In this dissertation, we present …